Skip to main content
Log in

Phase Formation and Ionic Conductivity of Na1 + 2xZnxZr2 – x(PO4)3 Phosphates

  • Published:
Inorganic Materials Aims and scope

Abstract—

Na1 + 2xZnxZr2 – x(PO4)3 phosphates have been prepared by a sol–gel process followed by heat treatment. A limited series (0 ≤ x ≤ 0.4) of solid solutions with the NASICON structure has been obtained in the system studied. The crystal structure of Na1.8Zn0.4Zr1.6(PO4)3 has been refined by the Rietveld method. The results demonstrate that the structural basis of this phosphate has the form of a mixed framework made up of corner-sharing (Zr/Zn)O6 octahedra and PO4 tetrahedra. The Na+ ions partially occupy two types of structural voids. The sodium ion conductivity of the Na1 + 2xZnxZr2 – x(PO4)3 phosphates has been studied using impedance spectroscopy. Their conductivity has been shown to increase with increasing carrier concentration, reaching 2.7 × 10–4 S/cm at 723 K in the case of Na1.8Zn0.4Zr1.6(PO4)3. It has been shown that increasing the degree of zinc substitution for zirconium leads to a change in the mechanism of defect formation in the materials studied: from intrinsic disorder at x = 0 to impurity-related disorder for x > 0.2. We have estimated the enthalpy of intrinsic sodium ion disorder (72 kJ/mol) and the activation energy for sodium migration (61 kJ/mol).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Naqash, S., Ma, Q., Tietz, F., and Guillon, O., Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid state reaction, Solid State Ionics, 2017, vol. 302, pp. 83–91.https://doi.org/10.1016/j.ssi.2016.11.004

    Article  CAS  Google Scholar 

  2. Park, H., Jung, K., Nezafati, M., Kim, C.S., and Kang, B., Sodium ion diffusion in Nasicon (Na3Zr2Si2PO12) solid electrolytes: effects of excess sodium, ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 41, pp. 27814–27824.https://doi.org/10.1021/acsami.6b09992

    Article  CAS  PubMed  Google Scholar 

  3. Goodenough, J.B., Hong, H.Y.-P., and Kafalas, J.A., Fast Na+-ion transport in skeleton structures, Mater. Res Bull., 1976, vol. 11, pp. 203–220.https://doi.org/10.1016/0025-5408(76)90077-5

    Article  CAS  Google Scholar 

  4. Pet’kov, V.I., Shipilov, A.S., Borovikova, E.Yu., Stenina, I.A., and Yaroslavtsev, A.B., Synthesis and ionic conductivity of NaZr2(AsO4)x(PO4)3 – x , Russ. J. Electrochem., 2019, vol. 55, no. 10, pp. 1034–1038.

    Article  Google Scholar 

  5. Sukhanov, M.V., Ermilova, M.M., Orekhova, N.V., Pet’kov, V.I., and Tereshchenko, G.F., Catalytic properties of zirconium phosphate and double phosphates of zirconium and alkali metals with a NaZr2(PO4)3 structure, Russ. J. Appl. Chem., 2006, vol. 79, no. 4, pp. 614–618.

    Article  CAS  Google Scholar 

  6. Pet’kov, V.I. and Asabina, E.A., Thermophysical properties of NZP ceramics (a review), Glass Ceram., 2004, vol. 61, nos. 7–8, pp. 233–239.

    Article  Google Scholar 

  7. Pilonen, P.C., Friis, H., Rowe, R., and Poirier, G., Crystal structure determination of kosnarite, KZr2(PO4)3, from the Mario Pinto Mine, Jenipapo district, Itinga, Brazil, Can. Mineral., 2020, vol. 58, pp. 1–16.https://doi.org/10.3749/canmin.2000044

    Article  CAS  Google Scholar 

  8. Schlem, R., Till, P., Weiss, M., Krauskopf, T., Culver, S.P., and Zeier, W.G., Ionic conductivity of the NASICON-related thiophosphate Na1 + xTi2 – xGax(PS4)3, Chem. – Eur. J., 2019, vol. 25, pp. 4143–4148.https://doi.org/10.1002/chem.201805569

    Article  CAS  PubMed  Google Scholar 

  9. Das, A., Krishna, P.S.R., Goswami, M., and Krishnan, M., Structural analysis of Al and Si substituted lithium germanium phosphate glass-ceramics using neutron and X-ray diffraction, J. Solid State Chem., 2019, vol. 271, pp. 74–80.https://doi.org/10.1016/j.jssc.2018.12.038

    Article  CAS  Google Scholar 

  10. Yaroslavtsev, A.B., Solid electrolytes: main prospects of research and development, Usp. Khim., 2016, vol. 85, no. 11, pp. 1255–1276.

    Article  CAS  Google Scholar 

  11. Tiliakos, A., Iordache, M., and Marinoiu, A., Ionic conductivity and dielectric relaxation of NASICON superionic conductors at the near-cryogenic regime, Appl. Sci., 2021, vol. 11, paper 8432.https://doi.org/10.3390/app11188432

  12. Noguchi, Y., Kobayashi, E., Plashnitsa, L.S., Okada, S., and Yamaki, J.I., Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds, Electrochim. Acta, 2013, vol. 101, pp. 59–65.https://doi.org/10.1016/j.electacta.2012.11.038

    Article  CAS  Google Scholar 

  13. Lalère, F., Leriche, J.B., Courty, M., Boulineau, S., Viallet, V., Masquelier, C., and Seznec, V., An all-solid state NASICON sodium battery operating at 200°C, J. Power Sources, 2014, vol. 247, pp 975–980.https://doi.org/10.1016/j.jpowsour.2013.09.051

    Article  CAS  Google Scholar 

  14. Stenina, I.A. and Yaroslavtsev, A.B., Nanomaterials for lithium-ion batteries and hydrogen energy, Pure Appl. Chem., 2017, vol. 89, no. 8, pp. 1185–1194.https://doi.org/10.1515/pac-2016-1204

    Article  CAS  Google Scholar 

  15. Novikova, S.A., Larkovich, R.V., Chekannikov, A.A., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., Electrical conductivity and electrochemical characteristics of Na3V2(PO4)3-based NASICON-type materials, Inorg. Mater., 2018, vol. 54, no. 8, pp. 839–849.

    Google Scholar 

  16. Zhao, C., Liu, L., Qi, X., Lu, Y., Wu, F., Zhao, J., Yu, Y., Hu, Y.S., and Chen, L., Solid-state sodium batteries, Adv. Energy Mater., 2018, vol. 8, paper 1703012.https://doi.org/10.1002/aenm.201703012

  17. Ruan, Y., Guo, F., Liu, J., Song, S., Jiang, N., and Cheng, B., Optimization of Na3Zr2Si2PO12 ceramic electrolyte and interface for high performance solid-state sodium battery, Ceram. Int., 2019, vol. 45, pp. 1770–1776.https://doi.org/10.1016/j.ceramint.2018.10.062

    Article  CAS  Google Scholar 

  18. Wang, Y., Song, S., Xu, C., Hu, N., Molenda, J., and Lu, L., Development of solid-state electrolytes for sodium-ion battery—a short review, Nano Mater. Sci., 2019, vol. 1, pp. 91–100.https://doi.org/10.1016/j.nanoms.2019.02.007

    Article  Google Scholar 

  19. Guin, M., Tietz, F., and Guillon, O., New promising NASICON material as solid electrolyte for sodium-ion batteries: correlation between composition, crystal structure and ionic conductivity of Na3 + xSc2SixP3 – xO12, Solid State Ionics, 2016, vol. 293, pp. 18–26.https://doi.org/10.1016/j.ssi.2016.06.005

    Article  CAS  Google Scholar 

  20. Naqash, S., Tietz, F., Yazhenskikh, E., Müller, M., and Guillon, O., Impact of sodium excess on electrical conductivity of Na3Zr2Si2PO12 + xNa2O ceramics, Solid State Ionics, 2019, vol. 336, pp. 57–66.https://doi.org/10.1016/j.ssi.2019.03.017

    Article  CAS  Google Scholar 

  21. Arbi, K., Jimenez, R., Salkus, T., Orliukas, A.F., and Sanz, J., On the influence of the cation vacancy on lithium conductivity of Li1 + xRxTi2 – x(PO4)3 Nasicon type materials, Solid State Ionics, 2015, vol. 271, pp. 28–33.https://doi.org/10.1016/j.ssi.2014.10.016

    Article  CAS  Google Scholar 

  22. Losilla, E.R., Bruque, S., Aranda, M.A.G., Moreno-Real, L., Morin, E., and Quarton, M., NASICON to scandium wolframate transition in Li1 + xMxHf2 – x(PO4)3 (M = Cr, Fe): structure and ionic conductivity, Solid State Ionics, 1998, vol. 112, nos. 1–2, pp. 53–62.https://doi.org/10.1016/S0167-2738(98)00207-0

    Article  CAS  Google Scholar 

  23. Moon, S.-H., Kim, Y.H., Cho, D.-Ch., Shin, E.-Ch., Lee, D., Im, W.B., and Lee, J.-S., Sodium ion transport in polymorphic scandium NASICON analog Na3Sc2(PO4)3 with new dielectric spectroscopy approach for current–constriction effects, Solid State Ionics, 2016, vol. 289, pp. 55–71.https://doi.org/10.1016/j.ssi.2016.02.017

    Article  CAS  Google Scholar 

  24. Zheng, Q., Yi, H., Li, X., and Zhang, H., Progress and prospect for NASICON-type Na3V2(PO4)3 for electrochemical energy storage, J. Energy Chem., 2018, vol. 27, no. 6, pp. 1597–1617.https://doi.org/10.1016/j.jechem.2018.05.001

    Article  Google Scholar 

  25. Qiu, Sh., Wu, X., Wang, M., Lucero, M., Wang, Y., Wang, J., Yang, Zh., Xu, W., Wang, Q., Gu, M., Wen, J., Huang, Y., Xu, Zh.J., and Feng, Zh., NASICON-type Na3Fe2(PO4)3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries, Nano Energy, 2019, vol. 64, paper 103941.https://doi.org/10.1016/j.nanoen.2019.103941

  26. Pershina, S.V., Pankratov, A.A., Vovkotrub, E.G., and Antonov, B.D., Promising high-conductivity Li1.5Al0.5Ge1.5(PO4)3 solid electrolytes: the effect of crystallization temperature on the microstructure and transport properties, Ionics, 2019, vol. 25, no. 10, pp. 4713–4725.https://doi.org/10.1007/s11581-019-03021-5

    Article  CAS  Google Scholar 

  27. Yen, P.-Y., Lee, M.-L., Gregory, D.H., and Liu, W.-R., Optimization of sintering process on Li1 + xAlxTi2 – x(PO4)3 solid electrolytes for all-solid-state lithium-ion batteries, Ceram. Int., 2020, vol. 46, pp. 20529–20536. https://doi.org/10.1016/j.ceramint.2020.05.162

    Article  CAS  Google Scholar 

  28. Dias, J.A., Santagneli, S.H., and Messaddeq, Y., Methods for lithium ion NASICON preparation: from solid-state synthesis to highly conductive glass-ceramics, J. Phys. Chem. C, 2020, vol. 124, no. 49, pp. 26518–26539.https://doi.org/10.1021/acs.jpcc.0c07385

    Article  CAS  Google Scholar 

  29. Pershina, S.V., Il’ina, E.A., Druzhinin, K.V., and Farlenkov, A.S., Effect of Li2O–Al2O3–GeO2–P2O5 glass crystallization on stability versus molten lithium, J. Non-Cryst. Solids, 2020, vol. 527, paper 119708.https://doi.org/10.1016/j.jnoncrysol.2019.119708

  30. Kurzina, E.A., Stenina, I.A., Dalvi, A., and Yaroslavtsev, A.B., Synthesis and ionic conductivity of lithium titanium phosphate-based solid electrolytes, Inorg. Mater., 2021, vol. 57, no. 10, pp. 1004–1011.

    Article  Google Scholar 

  31. Rietveld, H.M., Line profiles of neutron powder-diffraction peaks for structure refinement, Acta Crystallogr., 1967, vol. 22, pp. 151–152.

    Article  CAS  Google Scholar 

  32. Kim, Y.I. and Izumi, F., Structure refinements with a new version of the Rietveld-refinement program RIETAN, J. Ceram. Soc. Jpn., 1994, vol. 102, pp. 401–404.

    Article  CAS  Google Scholar 

  33. Hagman, L.O. and Kierkegaard, P., Acta Chem. Scand., 1968, vol. 22, no. 6, pp. 1822–1832.

    Article  CAS  Google Scholar 

  34. Stenina, I.A., Zhizhin, M.G., Lazoryak, B.I., and Yaroslavtsev, A.B., Phase transitions, structure and ion conductivity of zirconium hydrogen phosphates, H1 +/– xZr2 – xMx(PO4)3·H2O (M = Nb, Y), Mater. Res. Bull., 2009, vol. 44, no. 7, pp. 1608–1612.https://doi.org/10.1016/j.materresbull.2009.01.011

    Article  CAS  Google Scholar 

  35. Asabina, E., Pet’kov, V., Maiorov, P., Lavrenov, D., Shchelokov, I., and Kovalsky, A., Synthesis, structure and thermal expansion of the phosphates M0.5 + x \({\text{M}}_{x}^{'}\)Zr2 – x(PO4)3 (M, M' – metals in oxidation state +2), Pure Appl. Chem., 2017, vol. 89, no. 4, pp. 523–534.https://doi.org/10.1515/pac-2016-100510.1515/pac-2016-1005

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-12063. The electrical conductivity measurements were supported by the Russian Federation Ministry of Science and Higher Education as part of the state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Asabina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedin, V.Y., Kazachiner, O.V., Asabina, E.A. et al. Phase Formation and Ionic Conductivity of Na1 + 2xZnxZr2 – x(PO4)3 Phosphates. Inorg Mater 58, 64–70 (2022). https://doi.org/10.1134/S0020168522010046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522010046

Keywords:

Navigation