Skip to main content

Advertisement

Log in

Synthesis, characterization, electrical properties, and Na+ transport pathways simulation in Na2ZnP1.5As0.5O7

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A new sodium zinc di(phosphate/arsenate) Na2ZnP1.5As0.5O7 has been synthesized as polycrystalline powder by solid-state reaction at 550°C, and its structure was determined by using the Rietveld refinement. The structural model of Na2ZnP1.5As0.5O7 has been supported by the two models of validation the charge distribution (CHARDI) and bond valence sum (BVS). The vibration mode of the diphosphate-diarsenate absorption bands has been studied by infrared spectroscopy technique. As quantitative analysis, ICP-MS has been used to prove the Na2ZnP1.5As0.5O7 formula, especially P/As ratio. The electrical properties of the title compound have been determined by impedance spectroscopy in the 330–560°C temperature range. The conductivity varied between 1.14 10-7 S.cm−1 at 330 °C and 7.41 10−6 S.cm−1 at 500°C and the activation energy value is Ea=0.937 eV. The simulation of sodium transport pathways by the means of the BVSE (bond valence site energy) model shows 2D pathways in the interlayer’s space. The empirical activation energy deduced from the BVSE model is about 0.936 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Durif A (1995) Crystal chemistry of condensed phosphates. Springer, US

    Book  Google Scholar 

  2. Goodenough JB, Hong HY-P, Kafalas JA (1976) Fast Na+-ion transport in skeleton structures. Mater Res Bull 11:203–220. https://doi.org/10.1016/0025-5408(76)90077-5

    Article  CAS  Google Scholar 

  3. Ellis BL, Nazar LF (2012) Sodium and sodium-ion energy storage batteries. Curr Opin Solid State Mater Sci 16:168–177

    Article  CAS  Google Scholar 

  4. Marzouki R, Sayed MA, Graia M, Zid MF (2019) Cobalt phosphates and applications. Intech Open, London. https://doi.org/10.5772/intechopen.86215

    Book  Google Scholar 

  5. Marzouki R (2020) Electrical properties and alkali-pathways simulation of new mixed conductor Na4Li0.62Co5.67Al0.71(AsO4)6. Mater Res Express 7:16313

    Article  CAS  Google Scholar 

  6. Marzouki R, Zid MF (2019) Non-centrosymmetric Na7Li0.8K0.2Co5(As3O10)2(As2O7)2: synthesis, structure and alkali ion-conduction pathways simulation. Int J Electrochem Sci 15(4):3776–3792. https://doi.org/10.20964/2020.05.38

  7. Vijaya Kumar B, Vithal M (2012) Luminescence (M=Mn2+, Cu2+) and ESR (M=Gd3+, Mn2+, Cu2+) of Na2ZnP2O7: M. Physica B 407:2094–2099

  8. Gacem L, Artemenko A, Ouadjaout D, Chaminade JP, Garcia A, Pollet M, Viraphong O (2009) ESR and fluorescence studies of Mn-doped Na2ZnP2O7 single crystal and glasses. Solid State Sci 11:1854–1860

    Article  CAS  Google Scholar 

  9. Bhake AM, Zade GD, Nair GB, Dhoble SJ (2015) Investigation of photoluminescence properties of reddish-orange emitting Na2ZnP2O7: Eu3+ phosphor. Int J Lumin Appl 5(2):224–228

  10. Amara A, Gacem L, Gueddim A, Belbal R, Soltani MT, Guerbous L (2018) Luminescence properties of Cr3+ ions in Na2ZnP2O7 crystal. Phys B Phys Condens Matter 545:408–412

    Article  CAS  Google Scholar 

  11. Fhoula M, Dammak M (2019) Optical spectroscopy of thermal stable Na2ZnP2O7:Sm3+/(Li+, K+) phosphors. J Lumin 210:1–6

    Article  CAS  Google Scholar 

  12. Shepelev YF, Petrova MA, Novikova AS, Lapshin AE (2002) Crystal Structures of Na2ZnP2O7, K2ZnP2O7, and LiKZnP2O7 Phases in the M2O–ZnO–P2O5 Glass-Forming System (M = Li, Na, and K). Glas Phys Chem 28(5):317–321. https://doi.org/10.1023/A:1020752811708

  13. Shepelev YF, Lapshin AE, Petrova MA, Novikova AS (2005) Crystal Structure of the LiNaZnP2O7 Compound in the Li2ZnP2O7-Na2ZnP2O7. Glass-Forming System, Fiz. Khim. Stekla, 2005, 31(5) 949–952 [Glass Phys. Chem. (Engl. transl.), 2005, 31(5):690–693

  14. Shepelev YF, Lapshin AE, Petrova MA (2006) Crystal Structure of Sodium Potassium Zinc Diphosphate NaKZnP2O7. J Solid State Chem 47:1098–1102

  15. Petrova MA, Mikirticheva GA, Grebenshchikov RG (2007) Phase equilibria in the Zn2P2O7-M2ZnP2O7 and M′2ZnP2O7-M″2ZnP2O7 (M, M′, M″ = Li, Na, K) glass-forming systems. Inorg Mater 43(9):1024–1031

  16. Chouaib S, Ben Rhaiem A, Guidara K (2011) Dielectric relaxation and ionic conductivity studies of Na2ZnP2O7. Bull Mater Sci 34(4):915–920

  17. Venckutė V, Dindune A, Valdniece D, Krumina A, Lelis M, Jasulaitienė V (2017) Preparation, structure, surface and impedance analysis of Na2Zn0.5Mn0.5P2O7 ceramics. Lith J Phys 57(3):183–193

  18. Kobashi D, Kohara S, Yamakawa J, Kawahara A (1998) Un Monophosphate Synthétique de Sodium et de Cobalt : Na4Co7(PO4)6. Acta Cryst C 54:7–9

  19. Ben Smida Y, Marzouki R, Georges S, Kutteh R, Avdeev M, Guesmi A, Zid MF (2016) Synthesis, crystal structure, electrical properties, and sodium transport pathways of the new arsenate Na4Co7(AsO4)6. J Solid State Chem 239:8–16

    Article  CAS  Google Scholar 

  20. The Materials Project. Materials Data on NaCo2P3O10 by Materials Project. United States: N. p., 2020. https://doi.org/10.17188/1680942

  21. Ben Smida Y, Marzouki R, Guesmi A, Georges S, Zid MF (2015) Synthesis, structural and electrical properties of a new cobalt arsenate NaCo2As3O10. J Solid State Chem 221:132–139

    Article  CAS  Google Scholar 

  22. Brown ID (2002) The Chemical Bond in Inorganic Chemistry – The Bond Valence Model. IUCr Monographs on Crystallography, No. 12. Oxford University Press

  23. Adams S (2001) Relationship between bond valence and bond softness of alkali halides and chalcogenides. Acta Cryst B57:278–287

    Article  CAS  Google Scholar 

  24. Eon JG, Nespolo M (2015) Charge distribution as a tool to investigate structural details. III. Extension to description in terms of anion‐centred polyhedral. Acta Cryst B 71:34–47

    Article  CAS  Google Scholar 

  25. Nespolo M, Guillot B (2016) CHARDI2015: charge distribution analysis of non-molecular structures. J Appl Crystallogr 49:317–321

    Article  CAS  Google Scholar 

  26. Adams S, Rao RP (2009) Transport pathways for mobile ions in disordered solids from the analysis of energy-scaled bond-valence mismatch landscapes. Phys Chem Chem Phys 11:3210–3216

    Article  CAS  Google Scholar 

  27. Adams S, Rao RP (2011) High power lithium ion battery materials by computational design. Phys Status Solidi A 208:1746–1753

    Article  CAS  Google Scholar 

  28. Chen H, Wong LL, Adams S (2019) SoftBV – a software tool for screening the materials genome of inorganic fast ion conductors. Acta Cryst B 75:18–33

    Article  CAS  Google Scholar 

  29. Larson AC, Von Dreele RB (2000) General Structure Analysis System (GSAS). Report LAUR 86–748, Los Alamos National Laboratory, Los Alamos, NM

  30. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213. https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  31. Momma K, Izumi F (2011) VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Article  CAS  Google Scholar 

  32. Erragh F, Boukhari A, Sadel A, Holt EM (1998) Disodium Zinc Pyrophosphate and Disodium (Europium) Zinc Pyrophosphate. Acta Cryst C 54:1373–1376

    Article  Google Scholar 

  33. Belharouak I, Gravereau P, Parent C, Chaminade JP, Lebraud E, Le Flem G (2000) Crystal Structure of Na2ZnP2O7: Reinvestigation. J Solid State Chem 152:466–473

    Article  CAS  Google Scholar 

  34. Sanz F, Parada C, Rojo JM, Ruiz-Valero C, Saez-Puche R (1999) Studies on Tetragonal Na2CoP2O7, a Novel Ionic Conductor. J Solid State Chem 145(2):604–611

    Article  CAS  Google Scholar 

  35. Sale M, Avdeev M, Mohamed Z, Ling CD, Barpanda P (2017) Magnetic structure and properties of centrosymmetric twisted-melilite K2CoP2O7. Dalton Trans 46:6409–6416

    Article  CAS  Google Scholar 

  36. Ben Rhaiem A, Hlel K, Guidara M, Gargouri (2009) Electrical conductivity and dielectric analysis of AgNaZnP2O7 compound. J Alloys Compd 485((1-2)):718–723

    Article  CAS  Google Scholar 

  37. Ben Rhaiem A, Chouaib S, Guidara K (2010) Dielectric relaxation and ionic conductivity studies of Ag2ZnP2O7. Ionics 16(5):455–463

    Article  CAS  Google Scholar 

  38. Marzouki R, Ben Smida Y, Guesmi A, Georges S, Ali IH, Adams S, Zid MF (2018) Structural and Electrical Investigation of New Melilite Compound K0.86Na1.14CoP2O7. Int J Electrochem Sci 13:11648–11662

  39. Marzouki R, Ben Smida Y, Sonni M, Avdeev M, Zid MF (2020) Synthesis, structure, electrical properties and Na+ migration pathways of Na2CoP1. 5As0. 5O7. J Solid State Chem 285:121058

    Article  CAS  Google Scholar 

  40. Langlois S, Couret F (1989) Flow-through and flow-by porous electrodes of nickel foam. I. Material characterization. J Appl Electrochem 19:43–50. https://doi.org/10.1007/BF01039388.P.S

    Article  CAS  Google Scholar 

  41. ALQarni OSA, Marzouki R, Smida YB, Alghamdi MM, Avdeev M, Tahar RB, Zid MF (2020) Synthesis, electrical properties and Na+ migration pathways of Na2CuP1. 5As0. 5O7. Processes 8(3):305

    Article  CAS  Google Scholar 

  42. Moussa MAB, Marzouki R, Brahmia A, Georges S, Obbade S, Zid MF (2019) Synthesis and Structure of New Mixed Silver Cobalt(II)/(III) Diphosphate - Ag3.68Co2(P2O7)2. Silver(I) Transport in the Crystal. Int J Electrochem Sci 14:1500–1515

    Article  Google Scholar 

  43. Marzouki R, Brahmia A, Bondok S, Keshk S, Zid MF, Al-Sehimi AG, Koshella A, Heinze T (2019) Mercerization effect on structure and electrical properties of cellulose: Development of a novel fast Na-ionic conductor. Carbohydr Polym 221:29–36

    Article  CAS  Google Scholar 

  44. Marzouki R, Brahmia A, Alsulami QA, Keshk SMAS, Emwas A, Jaremko M, Zid MF, Heinze T (2021) Structure, thermal stability and electrical properties of cellulose-6-phosphate: development of a novel fast Na-ionic conductor. Polym Int. https://doi.org/10.1002/pi.6198

    Article  Google Scholar 

  45. Marzouki R, Ben Smida Y, Avdeev M, Majed M, Alghamdi, Zid MF (2019) Synthesis, structure and Na+ migration pathways of new Wylleite-type Na1.25Co2.187Al1.125(AsO4)3. Mater Res Express 6(12):126313

    Article  CAS  Google Scholar 

  46. Nasri R, Marzouki R, Georges S, Obbade S, Zid MF (2018) Synthesis, sintering, electrical properties, and sodium migration pathways of new lyonsite Na 2 Co 2 (MoO 4 ). Turk J Chem 42:1251–1264

    Article  CAS  Google Scholar 

  47. Rezgui E, Marzouki R, Bani-Fwaz MZ, Ouerfelli N (2020) A New Triphosphate TlFeHP3O10: Synthesis, Crystal Structure, Tl+ and Proton Conduction Pathways. Int J Electrochem Sci 15:8512–8526

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Group Program under grant number (R.G.P.1/141/40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riadh Marzouki.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sallemi, Y., Marzouki, R., Ben Smida, Y. et al. Synthesis, characterization, electrical properties, and Na+ transport pathways simulation in Na2ZnP1.5As0.5O7. Ionics 27, 3051–3061 (2021). https://doi.org/10.1007/s11581-021-04059-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04059-0

Keywords

Navigation