Skip to main content
Log in

Multiferroic Nanocrystals and Diluted Magnetic Semiconductors as a Base for Designing Magnetic Materials

  • Published:
Inorganic Materials Aims and scope

Abstract

The paper reviews scientific studies on the synthesis and properties of magnetic nanocrystals based on ferrites and diluted magnetic semiconductors that have been reported mostly in the past 10–15 years. New data on controlling the characteristics of these materials by doping and practical applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Lu, C., Wu, M., Lin, L., and Liu, J.-M., Single-phase multiferroics: new materials, phenomena, and physics, Natl. Sci. Rev., 2019, vol. 6, no. 4, pp. 653–668. https://doi.org/10.1093/nsr/nwz091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kefeni, K.K., Msagati, T.A.M., and Mamba, B.B., Ferrite nanoparticles: synthesis, characterisation and applications in electronic device, Mater. Sci. Eng., B, 2017, vol. 215, pp. 37–55. https://doi.org/10.1016/j.mseb.2016.11.002

    Article  CAS  Google Scholar 

  3. Liu, H. and Yang, X., A brief review on perovskite multiferroics, Ferroelectrics, 2017, vol. 507, no. 1, pp. 69–85. https://doi.org/10.1080/00150193.2017.1283171

    Article  CAS  Google Scholar 

  4. Hajalilou, A. and Mazlan, S.A., A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties, Appl. Phys. A, 2016, vol. 122, no. 680. https://doi.org/10.1007/s00339-016-0217-2

  5. Hyeon, T., Chemical synthesis of magnetic nanoparticles, Chem. Commun., 2003, vol. 34, no. 8, pp. 927–934. https://doi.org/10.1002/chin.200324224

    Article  Google Scholar 

  6. Gajek, M., Bibes, M., Fusil, S., Bouzehouane, K., Fontcuberta, J., Barthelemy, A., and Fert, A., Tunnel junctions with multiferroic barriers, Nat. Mater., 2007, vol. 6, pp. 296–302. https://doi.org/10.1038/nmat1860

    Article  CAS  PubMed  Google Scholar 

  7. Petrova, E., Kotsikau, D., and Pankov, V., Structural characterization and magnetic properties of sol–gel derived ZnxFe3–xO4 nanoparticles, J. Magn. Magn. Mater., 2014, vol. 378, pp. 429–435. https://doi.org/10.1016/j.jmmm.2014.11.076

    Article  CAS  Google Scholar 

  8. Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., and Ramesh, R., Epitaxial BiFeO3 multiferroic thin film heterostructures, Science, 2003, vol. 299, pp. 1719–1722. https://doi.org/10.1126/science.1080615

    Article  CAS  PubMed  Google Scholar 

  9. Spaldin, A., Cheong, S.W., and Ramesh, R., Multiferroics: past, present, and future, Phys. Today, 2010, vol. 63, no. 10, p. 38. https://doi.org/10.1063/1.3502547

    Article  Google Scholar 

  10. Popkov, V.I., Almjasheva, O.V., Nevedomskyi, V.N., Sokolov, V.V., and Gusarov, V.V., Crystallization behavior and morphological features of YFeO3 nanocrystallites obtained by glycine-nitrate combustion, Nanosyst.: Phys., Chem., Math., 2015, vol. 6, no. 6, pp. 866–874 https://doi.org/10.17586/2220-8054-2015-6-6-866-874

    Article  CAS  Google Scholar 

  11. Yuan, X., Sun, Y., and Xu, M., Effect of Gd substitution on the structure and magnetic properties of YFeO3 ceramics, J. Solid State Chem., 2012, vol. 196, pp. 362–366. https://doi.org/10.1088/1757-899X/73/1/012082

    Article  CAS  Google Scholar 

  12. Derras, M. and Hamdad, N., New approach for the spin effect on the ground state properties of the cubic and hexagonal YFeO3 perovskite oxide: GGA+U based on the DFT+U description, Res. Phys., 2013, vol. 3, pp. 61–69. https://doi.org/10.2478/awutp-2020-0004

    Article  CAS  Google Scholar 

  13. Zhang, Y., Yang, J., Xu, J., Gao, Q., and Hong, Z., Controllable synthesis of hexagonal and orthorhombic YFeO3 and their visible-light photocatalytic activities, Mater. Lett., 2012, vol. 81, pp. 1–4. https://doi.org/10.1016/j.matlet.2012.04.080

    Article  CAS  Google Scholar 

  14. Downie, L.J., Goff, R.J., Kockelmann, W., and Forder, S.D., Structural, magnetic and electrical properties of the hexagonal ferrites MFeO3 (M=Y, Yb, In), J. Solid State Chem., 2012, vol. 190. 3, pp. 52–60. https://doi.org/10.1016/j.jssc.2012.02.004

    Article  CAS  Google Scholar 

  15. Zhang, R.L., Chen, C.-L., Jin, K.-X., Niu, L.-W., Xing, H., and Luo, B.-C., Dielectric behavior of hexagonal and orthorhombic YFeO3 prepared by modified sol-gel method, J. Electroceram., 2014, vol. 32, pp. 187–191. https://doi.org/10.1007/s10832-013-9869-x

    Article  CAS  Google Scholar 

  16. Cheng, Z.X., Shen, H., Xu, J.Y., and Liu, P., Magnetocapacitance effect in nonmultiferroic YFeO3 single crystal, J. Appl. Phys., 2012, vol. 111, no. 3, art. ID 034103. https://doi.org/10.1063/1.3681294

    Article  CAS  Google Scholar 

  17. Racu, A.V., Ursu, D., Kuliukova, O.V., Logofatu, C., et al., Direct low temperature hydrothermal synthesis of YFeO3 microcrystals, Mater. Lett., 2015, vol. 140, no. 1, pp. 107–110. https://doi.org/10.1016/j.matlet.2014.10.129

    Article  CAS  Google Scholar 

  18. Duan, L., Jiang, G.-J., Peng, W., and Wang, X.-J., Influence of reaction conditions on the phase composition, particle size and magnetic properties of YFeO3 microcrystals synthesized by hydrothermal method, J. Synth. Cryst., 2015, vol. 44, no. 8, pp. 2144–2149.

    CAS  Google Scholar 

  19. Popkov, V.I. and Almjasheva, O.V., Formation mechanism of YFeO3 nanoparticles under the hydrothermal conditions, Nanosyst.: Phys., Chem., Math., 2014, vol. 5, no. 5, pp. 703–708.

    Google Scholar 

  20. Tang, P., Sun, H., Chen, H., and Cao, F., Hydrothermal processing-assisted synthesis of nanocrystalline YFeO3 and its visible-light photocatalytic activity, Curr. Nanosci., 2012, vol. 8, pp. 64–67. https://doi.org/10.2174/1573413711208010064

    Article  CAS  Google Scholar 

  21. Shang, M., Zhang, C., Zhang, T., and Yuan, L., The multiferroic perovskite YFeO3, Appl. Phys. Lett., 2013, vol. 102, no. 6, art. ID 062903. https://doi.org/10.1063/1.4791697

    Article  CAS  Google Scholar 

  22. Nguen Anh Tien, Mittova, I.Ya., and Al’myasheva, O.V., Influence of the synthesis conditions on the particle size and morphology of yttrium orthoferrite obtained from aqueous solutions, Russ. J. Appl. Chem., 2009, vol. 82, no. 11, pp. 1915–1918. https://doi.org/10.1134/S1070427209110020

    Article  CAS  Google Scholar 

  23. Popkov, V.I., Tugova, E.A., Bachina, A.K., and Almyasheva, O.V., The formation of nanocrystalline orthoferrites of rare-earth elements XFeO3 (X = Y, La, Gd) via heat treatment of coprecipitated hydroxides, Russ. J. Gen. Chem., 2017, vol. 87, no. 11, pp. 2516–2524. https://doi.org/10.1134/S1070363217110020

    Article  CAS  Google Scholar 

  24. Popkov, V.I., Almjasheva, O.V., Schmidt, M.P., and Gusarov, V.V., Formation mechanism of nanocrystalline yttrium orthoferrite under heat treatment of the coprecipitated hydroxides, Russ. J. Gen. Chem., 2015, vol. 85, no. 6, pp. 1370–1375. https://doi.org/10.1134/S107036321506002X

    Article  CAS  Google Scholar 

  25. Popkov, V.I., Almjasheva, O.V., Panchuk, V.V., Semenov, V.G., and Gusarov, V.V., The role of pre-nucleus states in formation of nanocrystalline yttrium orthoferrite, Dokl. Chem., 2016, vol. 471, no. 2, pp. 356–359. https://doi.org/10.1134/S0012500816120041

    Article  CAS  Google Scholar 

  26. Popkov, V.I. and Almjasheva, O.V., Yttrium orthoferrite YFeO3 nanopowders formation under glycine-nitrate combustion conditions, Russ. J. Appl. Chem., 2014, vol. 87, no. 2, pp. 167–171. https://doi.org/10.1134/S1070427214020074

    Article  CAS  Google Scholar 

  27. Popkov, V.I., Almjasheva, O.V., and Gusarov, V.V., The investigation of the structure control possibility of nanocrystalline yttrium orthoferrite in its synthesis from amorphous powders, Russ. J. Appl. Chem., 2014, vol. 87, no. 10, pp. 1417–1421. https://doi.org/10.1134/S1070427214100048

    Article  CAS  Google Scholar 

  28. Popkov, V.I., Almjasheva, O.V., Schmidt, M.P., Izotova, S.G., and Gusarov, V.V., Features of nanosized YFeO3 formation under heat treatment of glycine–nitrate combustion products, Russ. J. Inorg. Chem., 2015, vol. 60, no. 10, pp. 1193–1198. https://doi.org/10.1134/S0036023615100162

    Article  CAS  Google Scholar 

  29. Popkov, V.I., Almjasheva, O.V., Semenova, A.S., Kellerman, D.G., Nevedomskiy, V.N., and Gusarov, V.V., Magnetic properties of YFeO3 nanocrystals obtained by different soft-chemical methods, J. Mater. Sci.: Mater. Electron., 2017, vol. 28, no. 10, pp. 7163–7170. https://doi.org/10.1007/s10854-017-6676-1

    Article  CAS  Google Scholar 

  30. Das, I., Chanda, S., Dutta, A., Banerjee, S., and Sinha, T.P., Dielectric relaxation of Y1–xRxFeO3 (R = Dy, Er, x = 0, 0.5), J. Alloys Compd., 2013, vol. 571, pp. 56–62. https://doi.org/10.1016/j.jallcom.2013.03.120

    Article  CAS  Google Scholar 

  31. Shein, I.R., Shein, K.I., Kozhevnikov, V.L., and Ivanovskii, A.L., Band structure and the magnetic and elastic properties of SrFeO3 and LaFeO3 perovskites, Phys. Solid State, 2005, vol. 47, no. 11, pp. 2082–2088. https://doi.org/10.1134/1.2131149

    Article  CAS  Google Scholar 

  32. Jain, P. and Srivastava, S., Investigation of structural, magnetic and electrical properties of pure LaFeO3 synthesized through solution combustion technique, Digest J. Nanomater. Biostruct., 2015, vol. 10, no. 1, pp. 141–147.

    Google Scholar 

  33. Fujii, T., Matsusue, I., and Takada, J., Superparamagnetic behavior and induced ferrimagnetism of LaFeO3 nanoparticles prepared by a hot-soap technique, in Advanced Aspects of Spectroscopy, Rijeka: InTech Open, 2012, ch. 20, pp. 373–390. https://doi.org/10.5772/2757

  34. Khetre, S.M., Jadhav, H., Jagadale, P.N., and Kulalb, S.R., Studies on electrical and dielectric properties of LaFeO3, Adv. Appl. Sci. Res., 2011, vol. 2, no. 4, pp. 503–511.

    CAS  Google Scholar 

  35. Khetre, S.M., Jadhav, H.V., and Bamane, S.S.R., Synthesis and characterization of nanocrystalline LaFeO3 by combustion route, Rasayan J. Chem., 2010, vol. 3, no. 1, pp. 82–86.

    CAS  Google Scholar 

  36. Sorescu, M., Xu, T., and Hannan, A., Initial stage growth mechanism of LaFeO3 perovskite through magnetomechanical ball-milling of lanthanum and iron oxides, Am. J. Mater. Sci., 2011, vol. 1, no. 1, pp. 57–66. https://doi.org/10.5923/j.materials.20110101.09

    Article  Google Scholar 

  37. Su, H., Jing, L., Shi, K., and Yao, C., Synthesis of large surface area LaFeO3 nanoparticles by SBA-16 template method as high active visible photocatalysts, J. Nanopart. Res., 2010, vol. 12, pp. 967–974. https://doi.org/10.1007/s11051-009-9647-5

    Article  CAS  Google Scholar 

  38. Acharya, S., Mondal, J., Ghosh, S., and Roy, S., Multiferroic behavior of lanthanum orthoferrite (LaFeO3), Mater. Lett., 2010, vol. 64, pp. 415–418. https://doi.org/10.1016/j.matlet.2009.11.037

    Article  CAS  Google Scholar 

  39. Nguyen, T.T. and Dang, L.M., Size effect on the structural and magnetic properties of nanosized perovskite LaFeO3 prepared by different methods, Adv. Mater. Sci. Eng., 2012. vol., 2012, art. ID 380306. https://doi.org/10.1155/2012/380306

    Article  CAS  Google Scholar 

  40. Köferstein, R., Jäger, L., and Ebbinghaus, S.G., Magnetic and optical investigations on LaFeO3 powders with different particle sizes and corresponding ceramics, Solid State Ionics, 2013, vols. 249–250, pp. 1–5. https://doi.org/10.1016/j.ssi.2013.07.001

    Article  CAS  Google Scholar 

  41. Bachina, A., Ivanov, V.A., and Popkov, V.I., Peculiarities of LaFeO3 nanocrystals formation via glycine-nitrate combustion, Nanosyst.: Phys., Chem., Math., 2017, vol. 8, no. 5, pp. 647–653. https://doi.org/10.17586/2220-8054-2017-8-5-647-653

    Article  CAS  Google Scholar 

  42. Nguyen An Tien, Mittova, I.Ya., Almjasheva, O.V., Kirillova S.A., and Gusarov, V.V., Influence of the preparation conditions on the size and morphology of nanocrystalline lanthanum orthoferrite, Glass Phys. Chem., 2008, vol. 34, no. 6, pp. 756–761. https://doi.org/10.1134/S1087659608060138

    Article  CAS  Google Scholar 

  43. Kostyukhin, E.M., Kustov, A.L., and Kustov, L.M., One-step hydrothermal microwave-assisted synthesis of LaFeO3 nanoparticles, Ceram. Int., 2019, vol. 45, pp. 14384–14388. https://doi.org/10.1016/j.ceramint.2019.04.155

    Article  CAS  Google Scholar 

  44. Tac, D.V., Mittova, I.Ya., and Mittova, V.O., Influence of lanthanum content and annealing temperature on the size and magnetic properties of sol–gel derived Y1–xLaxFeO3 nanocrystals, Inorg. Mater., 2011, vol. 47, no. 5, pp. 521–526. https://doi.org/10.1134/S0020168511050086

    Article  CAS  Google Scholar 

  45. Shen, H., Xu, J., Jin, M., and Jiang, G., Influence of manganese on the structure and magnetic properties of YFeO3 nanocrystal, Ceram. Int., 2012, vol. 38, no. 2, pp. 1473–1477. https://doi.org/10.1016/j.ceramint.2011.09.030

    Article  CAS  Google Scholar 

  46. Ma, Y., Wu, Y.J., Lin, Y.Q., and Chen, X.M., Microstructures and multiferroic properties of YFe1–xMnxO3 ceramics prepared by spark plasma sintering, J. Mater. Sci.: Mater. Electron., 2010, vol. 21, no. 8, pp. 838–843. https://doi.org/10.1007/s10854-009-0004-3

    Article  CAS  Google Scholar 

  47. Nguyen, A.T., Pham Vinh, N.T., Nguyen, T.T.L., Mittova, V.O., Vo, Q.M., Berezhnaya, M.V., Mittova, I.Ya., Doh, T.H., and Chau, H.D., Crystal structure and magnetic properties of perovskite YFe1–xMnxO3 nanopowders synthesized by co-precipitation method, Solid State Sci., 2019, vol. 96, art. ID 105922. https://doi.org/10.1016/j.solidstatesciences.2019.06.011

    Article  CAS  Google Scholar 

  48. Nguyen, A.T., Almjasheva, O.V., Mittova, I.Ya., Stognei, O.V., and Soldatenko, S.A., Synthesis and magnetic properties of YFeO3 nanocrystals, Inorg. Mater., 2009, vol. 45, no. 11, pp. 1304–1308. https://doi.org/10.1134/S0020168509110211

    Article  CAS  Google Scholar 

  49. Nguyen, A.T., Mittova, I.Ya., Solodukhin, D.O., Almjasheva, O.V., Mittova, V.O., and Demidova, S.Yu., Sol-gel formation and properties of nanocrystals of solid solutions Y1–xCaxFeO3, Russ. J. Inorg. Chem., 2014, vol. 59, no. 2, pp. 40–45. https://doi.org/10.1134/S0036023614020156

    Article  CAS  Google Scholar 

  50. Dinh Van Tac, Mittova, I.Ya., Mittova, V.O., and Almjasheva, O.V., Synthesis and magnetic properties of nanocrystalline Y1–xCdxFeO3–δ (0 ≤ x ≤ 0.2), Inorg. Mater., 2011, vol. 47, no. 10, pp. 1141–1146. https://doi.org/10.1134/S0020168511100037

    Article  CAS  Google Scholar 

  51. Polezhaeva, O.S., Dolgopolova, E.A., Baranchikov, A.E., Ivanov, V.K., and Tret’yakov, Yu.D., Synthesis of nanocrystalline solid solutions based on cerium dioxide doped with rare earth elements, Kondens. Sredy Mezhfaznye Granitsy, 2010, vol. 12, no. 2, pp. 154–159.

    CAS  Google Scholar 

  52. Berezhnaya, M.V., Mittova, I.Ya., Perov, N.S., Al’myasheva, O.V., Nguyen, A.T., Mittova, V.O., Bessalova, V.V., and Viryutina, E.L., Production of zinc-doped yttrium ferrite nanopowders by the sol–gel method, Russ. J. Inorg. Chem., 2018, vol. 63, no. 6, pp. 742–746. https://doi.org/10.1134/s0036023618060049

    Article  CAS  Google Scholar 

  53. Berezhnaya, M.V., Al’myasheva, O.V., Mittova, V.O., Nguyen, A.T., and Mittova, I.Ya., Sol-gel synthesis and properties of Y1–xBaxFeO3 nanocrystals, Russ. J. Gen. Chem., 2018, vol. 88, no. 6, pp. 1349–1349. https://doi.org/10.1134/s1070363218060464

    Article  CAS  Google Scholar 

  54. Nguyen, A.T., Pham, V., Chau, D.H., Mittova, V.O., Mittova, I.Ya., Kopeychenko, E.I., Nguyen, L.T.T., Bui, V.X., and Nguyen, A.T.P., Effect of Ni substitution on phase transition, crystal structure and magnetic properties of nanostructured YFeO3 perovskite, J. Mol. Struct., 2020, vol. 1215, p. 12829. https://doi.org/10.1016/j.molstruc.2020.128293

    Article  CAS  Google Scholar 

  55. Komlev, A.A. and Vilezhaninov, E.F., Glycine-nitrate combustion synthesis of nanopowders based on nonstoichiometric magnesium-aluminum spinel, Russ. J. Appl. Chem., 2013, vol. 86, no. 9, pp. 1344–1350. https://doi.org/10.1134/s1070427213090059

    Article  CAS  Google Scholar 

  56. Almjasheva, O.V., Tomkovich, M.V., Gusarov, V.V., Smirnov, A.V., and Fedorov, B.A., Structural features of ZrO2‒Y2O3 and ZrO2‒Gd2O3 nanoparticles formed under hydrothermal conditions, Russ. J. Gen. Chem., 2014, vol. 84, no. 5, pp. 804‒809. https://doi.org/10.1134/S1070363214050028

    Article  CAS  Google Scholar 

  57. Tugova, E.A. and Gusarov, V.V., Structure peculiarities of nanocrystalline solid solutions in GdAlO3‒GdFeO3 system, Nanosyst.: Phys., Chem., Math., 2013, vol. 4, no. 3, pp. 352‒356.

    Google Scholar 

  58. Batsanov, S.S., Strukturnaya Khimiya. Fakty i zavisimosti (Structural Chemistry: Facts and Dependencies), Moscow: Dialog, 2000.

  59. Tomina, E.V., Kurkin, N.A., and Mal’tsev, S.A., Microwave synthesis of yttrium orthoferrite-doped with nickel, Kondens. Sredy Mezhfaznye Granitsy, 2019, vol. 21, no. 2, pp. 306‒312. https://doi.org/10.17308/kcmf.2019.21/768

    Article  CAS  Google Scholar 

  60. Nguyen, T.A., Chau, D.H., Nguyen, L.T.T., Mittova, V.O., Do, H.T., and Mittova, I.Ya., Structural and magnetic properties of YFe1‒xCoxO3 (0. 1 ≤ x ≤ 0. 5) perovskite nanomaterials synthesized by co-precipitation method, Nanosyst.: Phys., Chem., Math., 2018, vol. 9, no. 3, pp. 424‒429. https://doi.org/10.17586/2220-8054-2018-9-3-424-429

    Article  CAS  Google Scholar 

  61. Tomina, E.V., Darinskii, B.M., Mittova, I.Ya., Churkin, V.D., Boikov, N.I., and Ivanova, O.V., Microwave-assisted synthesis of YCoxFe1–xO3 nanocrystals, Inorg. Mater., 2019, vol. 55, no. 4, pp. 390–394. https://doi.org/10.1134/S0020168519040150

    Article  CAS  Google Scholar 

  62. Haron, W., Thaweechai, T., Wattanathana, W., Laobuthee, A., Manaspiya, H., Veranitisagul, C., and Koonsaeng, N., Structural characteristics and dielectric properties of La1–xCoxFeO3 and LaFe1–xCoxO3 synthesized via metal organic complexes, Energy Procedia, 2013, vol. 34, pp. 791‒800. https://doi.org/10.1016/j.egypro.2013.06.815

    Article  CAS  Google Scholar 

  63. Ge, X., Liu, Y., and Liu, X., Preparation and gas-sensitive properties of LaFe1–yCoyO3 semiconducting materials, Sens. Actuators, B, 2001, vol. 79, pp. 171–174. https://doi.org/10.1016/s0925-4005(01)00869-3

    Article  CAS  Google Scholar 

  64. Vecherskii, S.I., Batalov, N.N., Esina, N.O., and Shekhtman, G.Sh., Region of existence and electrical properties of La1–xLixFeO3 solid solution, Phys. Solid State, 2004, vol. 46, no. 8, pp. 1474–1481. https://doi.org/10.1134/1.1788781

    Article  CAS  Google Scholar 

  65. Nadeev, A.N., Tsybulya, S.V., Gerasimov, E.Y., Kulikovskaya, N.A., and Isupova, L.A., Structural features of the formation of La1–xCaxFeO3–δ (0 ≤ x ≤ 0.7) hetero valent solid solutions, J. Struct. Chem., 2010, vol. 51, no. 5, pp. 891–897. https://doi.org/10.1007/s10947-010-0135-7

    Article  CAS  Google Scholar 

  66. Lin, Q., Yang, X., Lin, J., Guo, Z., and He, Y., The structure and magnetic properties of magnesium-substituted LaFeO3 perovskite negative electrode material by citrate sol-gel, Int. J. Hydrogen Energy, 2018, vol. 43, no. 28, pp. 12720–12729. https://doi.org/10.1016/j.ijhydene.2018.03.156

    Article  CAS  Google Scholar 

  67. Cao, E., Qin, Y., Cui, T., Sun, L., Hao, W., and Zhang, Y., Influence of Na doping on the magnetic properties of LaFeO3 powders and dielectric properties of LaFeO3 ceramics prepared by citric sol-gel method, Ceram. Int., 2017, vol. 43, no. 10, pp. 7922–7928. https://doi.org/10.1016/j.ceramint.2017.03.119

    Article  CAS  Google Scholar 

  68. Jagadeeshwaran, C., Selvadurai, A.P.B., Pazhanivelu, V., and Murugaraj, R., Structure, optical and magnetic behavior of LaFeO3 and LaFe0.9Ni0.1O3 by combustion method, Int. J. Innovative Res. Sci. Eng., 2014, pp. 2347‒3207. https://doi.org/10.13140/2.1.1506.4966

  69. Lin, Q., Xu, J., Yang, F., Yang, X., and He, Y., The influence of Ca substitution on LaFeO3 nanoparticles in terms of structural and magnetic properties, J. Appl. Biomater. Funct. Mater., 2018, vol. 16, no. 1S, pp. 17–25. https://doi.org/10.1177/2280800017753948

    Article  CAS  PubMed  Google Scholar 

  70. Yao, Q., Shen, Y., Zhou, H., Rao, G., Deng, J., and Pan, S., Crystal structure and magnetic behavior of the La0.1Bi0.9FeO3 compound, J. Rare Earths, 2016, vol. 34, no. 4, pp. 396–400. https://doi.org/10.1016/s1002-0721(16)60039-x

    Article  CAS  Google Scholar 

  71. Janbutrach, Y., Hunpratu, S., and Swatsitang, E., Ferromagnetism and optical properties of La1–xAlxFeO3 nanopowders, Nanoscale Res. Lett., 2014, vol. 9, no. 498, pp. 1–7. https://doi.org/10.1186/1556-276X-9-498

    Article  CAS  Google Scholar 

  72. Selvadurai, A.P.B., Pazhanivelu, V., Jagadeeshwaran, C., Murugaraj, R., Panneer, M.I., and Chou, F.C., Influence of Cr substitution on structural, magnetic and electrical conductivity spectra of LaFeO3, J. Alloys Compd., 2015, vol. 646, pp. 924–931. https://doi.org/10.1016/j.jallcom.2015.05.213

    Article  CAS  Google Scholar 

  73. Bhat, I., Husain, S., and Khan, W., Structural and Dielectric Properties of LaFe1–xZnxO3 (0 ≤ x ≤ 0.3), AIP Conf. Proc., 2013, vol. 1512, pp. 968‒969. https://doi.org/10.1063/1.4791364

    Article  CAS  Google Scholar 

  74. Bhat, I., Husain, S., Khan, W., and Patil, S.I., Effect of Zn doping on structural, magnetic and dielectric properties of LaFeO3 synthesized through sol–gel auto-combustion process, Mater. Res. Bull., 2013, vol. 48, pp. 4506‒4512. https://doi.org/10.1016/j.materresbull.2013.07.028

    Article  CAS  Google Scholar 

  75. Mukhopadhyay, K., Mahapatra, A.S., and Chakrabarti, P.K., Multiferroic behavior, enhanced magnetization and exchange bias effect of Zn substituted nanocrystalline LaFeO3 (La(1‒x)ZnxFeO3, x = 0.10, and 0.30), J. Magn. Magn. Mater., 2013, vol. 329, pp. 133‒141. https://doi.org/10.1016/j.jmmm.2012.09.063

    Article  CAS  Google Scholar 

  76. Mukhopadhyay, K., Mahapatra, A.S., and Chakrabarti, P.K., Enhanced magneto-electric property and exchange bias effect of Zn substituted LaFeO3 (La0.50Zn0.50FeO3), Mater. Lett., 2015, vol. 159, pp. 9‒11. https://doi.org/10.1016/j.matlet.2015.06.059

    Article  CAS  Google Scholar 

  77. Knurova, M.V., Mittova, I.Ya., Perov, N.S., Al’myasheva, O.V., Tien, N.A., Mittova, V.O., Bessalova, V.V., and Viryutina, E.L., Effect of the degree of doping on the size and magnetic properties of nanocrystals La1–xZnxFeO3 synthesized by the sol–gel method, Russ. J. Inorg. Chem., 2017, vol. 62, no. 3, pp. 281–287. https://doi.org/10.1134/s0036023617030081

    Article  CAS  Google Scholar 

  78. Nguyen, A.T., Mittova, V.O., Mittova, I.Ya., and Din’, V.T., Synthesis of La1–xSr(Ca)xFeO3 (x = 0; 0.1; 0.2; 0.3) nanopowders by the sol‒gel method, Kondens. Sredy Mezhfaznye Granitsy, 2010, vol. 12, no. 1, pp. 56‒60.

    CAS  Google Scholar 

  79. Berezhnaya, M.V., Perov, N.S., Almjasheva, O.V., Mittova, V.O., Nguyen, A.T., Mittova, I.Ya., Druzhinina, L.V., and Alekhina, Yu.A., Synthesis and magnetic properties of barium-doped nanocrystal lanthanum orthoferrite, Russ. J. Gen. Chem., 2019, vol. 89, no. 3, pp. 480–485. https://doi.org/10.1134/s1070363219030198

    Article  CAS  Google Scholar 

  80. Nguyen, T.A., Pham, V.N.T., Le, H.T., Chau, D.H., Mittova, V.O., Nguyen, L.T.T., Dinh, D.A., Hao, T.V.N., and Mittova, I.Ya., Crystal structure and magnetic properties of LaFe1–xNixO3 nanomaterials prepared via a simple co-precipitation method, Ceram. Int., 2019, vol. 45, pp. 21768–21772. https://doi.org/10.1016/j.ceramint.2019.07.178

    Article  CAS  Google Scholar 

  81. Arman, M.M., Imam, N.G., Loredo Portales, R., and El-Dek, S.I., Synchrotron radiation X-ray absorption fine structure and magnetization improvement of A‑site Ce3+ doped LaFeO3, J. Magn. Magn. Mater., 2020, vol. 513, art. ID 167097. https://doi.org/10.1016/j.jmmm.2020.167097

    Article  CAS  Google Scholar 

  82. Mitra, A., Shaw, A., and Chakrabarti, P.K., Structural transformation induced enhanced multiferroicity in Al3+ and Ti4+ co-doped LaFeO3, Adv. Powder Technol., 2020, vol. 31, no. 6, pp. 1‒11. https://doi.org/10.1016/j.apt.2020.04.013

    Article  CAS  Google Scholar 

  83. Sun, L., Qin, H., Wang, K., Zhao, M., and Hu, J., Structure and electrical properties of nanocrystalline La1‒xBaxFeO3 for gas sensing application, Mater. Chem. Phys., 2011, vol. 125, pp. 305‒308. https://doi.org/10.1016/j.matchemphys.2010.09.052

    Article  CAS  Google Scholar 

  84. GOST (State Standard) 19693-74: Magnetic Materials. Terms and Definitions, Moscow: Izd. Standartov, 1975.

  85. Belov, K.P., Zvezdin, A.K., Kadomtseva, A.M., and Levitan, R.Z., Spin-reorientation transitions in rare-earth magnets, Sov. Phys. Usp., 1976, vol. 19, no. 7, pp. 574–596.

    Article  Google Scholar 

  86. Belov, K.P., Magnetostriktsionnye yavleniya i ikh tekhnicheskie prilozheniya (Magnetostrictive Phenomena and Their Applications), Moscow: Nauka, 1987.

  87. Tugova, E.A., Bobrysheva, N.P., Selyutin, A.A., and Gusarov, V.V., Magnetic properties of complex oxides Gd2SrM2O7 (M = Fe, Al), Russ. J. Gen. Chem., 2008, vol. 78, no. 11, pp. 2000–2001. https://doi.org/10.1134/s1070363208110029

    Article  CAS  Google Scholar 

  88. Kopeychenko, E.I., Mittova, I.Ya., Perov, N.S., Nguyen, A.T., Mittova, V.O., Alekhina, Yu.A., and Pham, V., Synthesis, Composition, and magnetic properties of cadmium-doped lanthanum ferrite nanopowders, Inorg. Mater., 2021, vol. 57, no. 4, pp. 367–371. https://doi.org/10.1134/S0020168521040075

    Article  CAS  Google Scholar 

  89. Vijayaraghavan, T., Bradha, M., Babu, P., Parida, K.M., Ramadoss, G., Vadivel, S., Selvakumar, R., and Ashok, A., Influence of secondary oxide phases in enhancing the photocatalytic properties of alkaline earth elements doped LaFeO3 nanocomposites, J. Phys. Chem. Solids, 2020, vol. 140, pp. 109377. https://doi.org/10.1016/j.jpcs.2020.109377

    Article  CAS  Google Scholar 

  90. Lin, Z., Cai, W., Jiang, W., Fu, C., Li, C., and Song, Y., Effects of annealing temperature on the microstructure, optical, ferroelectric and photovoltaic properties of BiFeO3 thin films prepared by sol–gel method, Ceram. Int., 2013, vol. 39, pp. 8729–8736. https://doi.org/10.1016/j.ceramint.2013.04.058

    Article  CAS  Google Scholar 

  91. Selbach, S.M., Tybell, T., Einarsrud, M.-A., and Grande, T., Size-dependent properties of multiferroic BiFeO3 nanoparticles, Chem. Mater., 2007, vol. 19, pp. 6478–6484. https://doi.org/10.1021/cm071827w

    Article  CAS  Google Scholar 

  92. Shirokov, V.B., Golovko, Yu.I., and Mukhortov, V.M., Optical properties of BiFeO3 epitaxial thin films, Tech. Phys., 2014, vol. 59, pp. 102–106. https://doi.org/10.1134/s1063784214010174

    Article  CAS  Google Scholar 

  93. Karthikeyan, K. and Thirumoorthi, A., BiFeO3-Montmorillonite intercalated nano composites—synthesis and its characterization, Nanosyst.: Phys., Chem., Math., 2018, vol. 9, no. 5, pp. 631‒640. https://doi.org/10.17586/2220-8054-2018-9-5-631-640

    Article  CAS  Google Scholar 

  94. Ramesh, R. and Spaldin, N.A., Multiferroics: progress and prospects in thin films, Nat. Mater., 2007, vol. 6, pp. 21–29. https://doi.org/10.1038/nmat1805

    Article  CAS  PubMed  Google Scholar 

  95. Tokura, Y., Multiferroics—toward strong coupling between magnetization and polarization in a solid, J. Magn. Magn. Mater., 2007, vol. 310, pp. 1145–1150. https://doi.org/10.1016/j.jmmm.2006.11.198

    Article  CAS  Google Scholar 

  96. Catalan, G. and Scott, J.F., Physics and applications of bismuth ferrite, Adv. Mater., 2009, vol. 21, pp. 2463–2485. https://doi.org/10.1002/adma.200802849

    Article  CAS  Google Scholar 

  97. Eerenstein, W., Mathur, N.D., and Scott, J.F., Multiferroic and magnetoelectric materials, Nature, 2006, vol. 442, pp. 759–765. https://doi.org/10.1038/nature05023

    Article  CAS  PubMed  Google Scholar 

  98. Cheong, S.-W. and Mostovoy, M., Multiferroics: a magnetic twist for ferroelectricity, Nat. Mater., 2007, vol. 6, pp. 13–20. https://doi.org/10.1038/nmat1804

    Article  CAS  PubMed  Google Scholar 

  99. Almjasheva, O.V. and Gusarov, V.V., Prenucleation formations in control over synthesis of CoFe2O4 nanocrystalline powders, Russ. J. Appl. Chem., 2016, vol. 89, pp. 851–856. https://doi.org/10.1134/S107042721606001X

    Article  CAS  Google Scholar 

  100. Silva, J., Reyes, A., Esparza, H., Camacho, H., and Fuentes, L., BiFeO3: a review on synthesis, doping and crystal structure, Integr. Ferroelectr., 2011, vol. 126, no. 47, pp. 47–59. https://doi.org/10.1080/10584587.2011.574986

    Article  CAS  Google Scholar 

  101. Sadykova, Kh.A., Verbenko, I.A., Reznichenko, L.A., Abubakarov, A.G., Shilkina, L.A., Razumovskaya, O.N., and Dudkina, S.I., Possible increase of the thermal stability of the multiferroic BiFeO3 by varying the cationic composition, Konstr. Kompoz. Mater., 2013, no. 2, pp. 50–57.

  102. Cheng, Z.X., Wang, X.L., Du, Y., and Dou, S.X., A way to enhance the magnetic moment of multiferroic bismuth ferrite, J. Phys. D: Appl. Phys., 2010, vol. 43, art. ID 242001. https://doi.org/10.1088/0022-3727/43/24/242001

    Article  CAS  Google Scholar 

  103. Yoo, Y.J., Hwang, J.S., Lee, Y.P., Park, J.S., Kang, J.-H., and Kim, J., High ferromagnetic transition temperature in multiferroic BiFe0.95Ni0.05O3 compound, J. Appl. Phys., 2013, vol. 114, p. 163902. https://doi.org/10.1063/1.4826623

    Article  CAS  Google Scholar 

  104. Xu, Q., Zai, H., Wu, D., Qiu, T., and Xu, M.X., The magnetic properties of Bi(Fe0.95Co0.05)O3 ceramics, Appl. Phys. Lett., 2009, vol. 95, art. ID 112510. https://doi.org/10.1063/1.3233944

    Article  CAS  Google Scholar 

  105. Feroze, A., Idrees, M., Kim, D.K., Nadeem, M., Siddiqi, S.A., Shaukat, S.F., Atif, M., and Siddique, M., Low temperature synthesis and properties of BiFeO3, J. Electron. Mater., 2017, vol. 46, pp. 4582–4589. https://doi.org/10.1007/s11664-017-5463-3

    Article  CAS  Google Scholar 

  106. Egorysheva, A.V., Kuvshinova, T.B., Volodin, V.D., Ellert, O.G., Efimov, N.N., Skorikov, V.M., Baranchikov, A.E., and Novotortsev, V.M., Synthesis of high-purity nanocrystalline BiFeO3, Inorg. Mater., 2013, vol. 49, pp. 310–314. https://doi.org/10.1134/S0020168513030035

    Article  CAS  Google Scholar 

  107. Selbach, S.M., Tybell, T., Einarsrud, M.A., and Grande, T., Phase transitions, electrical conductivity and chemical stability of BiFeO3 at high temperatures, J. Solid State Chem., 2010, V. 183, pp. 1205–1208. https://doi.org/10.1016/j.jssc.2010.03.014

    Article  CAS  Google Scholar 

  108. Morozov, M.I., Lomanova, N.A., and Gusarov, V.V., Specific features of BiFeO3 formation in a mixture of bismuth(III) and iron(III) oxides, Russ. J. Gen. Chem., 2003, vol. 73, pp. 1676–1680. https://doi.org/10.1023/B:RUGC.0000018640.30953.70

    Article  CAS  Google Scholar 

  109. Liu, T., Xu, Y., and Zhao, J., Low-temperature synthesis of BiFeO3 via PVA sol–gel route, Ceram. Soc., 2010, vol. 93, pp. 3637. https://doi.org/10.1111/j.1551-2916.2010.03945.x

    Article  CAS  Google Scholar 

  110. Valant, M., Axelsson, A.-K., and Alford, N., Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3, Chem. Mater., 2007, vol. 19, pp. 5431–5436. https://doi.org/10.1021/cm071730

    Article  CAS  Google Scholar 

  111. Phapale, S., Mishra, R., and Das, D., Standard enthalpy of formation and heat capacity of compounds in the pseudo-binary Bi2O3–Fe2O3 system, J. Nucl. Mater., 2008, vol. 373, pp. 137–141. https://doi.org/10.1016/j.jnucmat.2007.05.036

    Article  CAS  Google Scholar 

  112. Mikhailov, A.V., Gribchenkova, N.A., Kolosov, E.N., Kaul’, A.R., and Alikhanyan, A.S., Mass spectrometric investigation of vaporization in the Bi2O3–Fe2O3 system, Russ. J. Phys. Chem., A, 2011, vol. 85, no. 1, pp. 26–30. https://doi.org/10.1134/S0036024411010183

    Article  CAS  Google Scholar 

  113. Rojac, T., Bencan, A., Malic, B., Tutuncu, G., Jones, J.L., Daniels, J.E., and Damjanovic, D., BiFeO3 ceramics: processing, electrical, and electromechanical properties, J. Am. Ceram. Soc., 2014, vol. 97, no. 7, p. 1993. https://doi.org/10.1111/jace.12982

    Article  CAS  Google Scholar 

  114. Chaudhuri, A., Mitra, S., Mandal, M., and Mandal, K., Nanostructured bismuth ferrites synthesized by solvothermal process, J. Alloys Compd., 2010, vol. 491, pp. 703–706. https://doi.org/10.1016/j.jallcom.2009.11.049

    Article  CAS  Google Scholar 

  115. Zhang, Q., Sando, D., and Nagarajan, V., Chemical route derived bismuth ferrite thin films and nanomaterials, J. Mater. Chem., 2016, vol. 4, p. 4092. https://doi.org/10.1039/C6TC00243A

    Article  CAS  Google Scholar 

  116. Guo, Y., Pu, Y., Cui, Y., Hui, C., Wan, J., and Cui, C., A simple method using citric acid as the template agent to improve photocatalytic performance of BiFeO3 nanoparticles, Mater. Lett., 2017, vol. 196, pp. 57–60. https://doi.org/10.1016/j.matlet.2017.03.023

    Article  CAS  Google Scholar 

  117. Wei, J. and Xue, D., Low-temperature synthesis of BiFeO3 nanoparticles by ethylenediaminetetraacetic acid complexing sol–gel process, Mater. Res. Bull., 2008, vol. 43, pp. 3368–3373. https://doi.org/10.1016/j.materresbull.2008.02.009

    Article  CAS  Google Scholar 

  118. Song, G.L., Ma, G.J., Su, J., Wang, T.X., Yang, H.Y., and Chang, F.G., Effect of Ho3+ doping on the electric, dielectric, ferromagnetic properties and TC of BiFeO3 ceramics, Ceram. Int., 2014, vol. 40, pp. 3579–3587. https://doi.org/10.1016/j.ceramint.2013.09.070

    Article  CAS  Google Scholar 

  119. Pradhan, S.K., Das, J., Rout, P.P., Mohanta, V.R., Das, S.K., Samantray, S., Sahu, D.R., Huang, J.L., Verma, S., and Roul, B.K., Effect of holmium substitution for the improvement of multiferroic properties of BiFeO3, J. Phys. Chem. Solids, 2010, vol. 71, pp. 1557–1564. https://doi.org/10.1016/j.jpcs.2010.08.001

    Article  CAS  Google Scholar 

  120. Elídia, A., Santos, I.A., Radovanovic, E., Bonzanini, R., Girotto, E.M., and Braz, J., Chemical characterization of BiFeO3 obtained by Pechini method, Chem. Soc., 2008, vol. 19, p. 1153. https://doi.org/10.1590/S0103-50532008000600015

    Article  Google Scholar 

  121. Proskurina, O.V., Tomkovich, M.V., Bachina, A.K., Sokolov, V.V., Danilovich, D.P., Panchuk, V.V., Semenov, V.G., and Gusarov, V.V., Formation of nanocrystalline BiFeO3 under hydrothermal conditions, Russ. J. Gen. Chem., 2017, vol. 87, no. 11, pp. 2507–2515. https://doi.org/10.1134/S1070363217110019

    Article  CAS  Google Scholar 

  122. Lomanova, N.A., Tomkovich, M.V., Danilovich, D.P., Osipov, A.V., Panchuk, V.V., Semenov, V.G., Pleshakov, I.V., Volkov, M.P., and Gusarov, V.V., Magnetic characteristics of nanocrystalline BiFeO3-based materials prepared by solution combustion synthesis, Inorg. Mater., 2020, vol. 56, no. 12, pp. 1271–1277. https://doi.org/10.1134/S0020168520120110

    Article  CAS  Google Scholar 

  123. Proskurina, O.V., Nogovitsin, I.V., Il’ina, T.S., Danilovich, D.P., Abiev, R.Sh., and Gusarov, V.V., Formation of BiFeO3 nanoparticles using impinging jets microreactor, Russ. J. Gen. Chem., 2018, vol. 88, no. 10, pp. 2139–2143. https://doi.org/10.1134/S1070363218100183

    Article  CAS  Google Scholar 

  124. Proskurina, O.V., Sokolova, A.N., Sirotkin, A.A., Abiev, R.Sh., and Gusarov, V.V., Role of hydroxide precipitation conditions in the formation of nanocrystalline BiFeO3, Russ. J. Inorg. Chem., 2021, vol. 66, no. 2, pp. 163–169. https://doi.org/10.1134/S0036023621020157

    Article  CAS  Google Scholar 

  125. Tretyakov, Yu.D., Development of inorganic chemistry as a fundamental for the design of new generations of functional materials, Russ. Chem. Rev., 2004, vol. 73, pp. 831–846. https://doi.org/10.1070/RC2004v073n09ABEH000914

    Article  CAS  Google Scholar 

  126. Zou, J., Gong, W., Ma, J., Li, L., and Jiang, J., Efficient catalytic activity BiFeO3 nanoparticles prepared by novel microwave-assisted synthesis, Nanosci. Nanotechnol., 2015, vol. 15, pp. 1304–1311. https://doi.org/10.1166/jnn.2015.9074

    Article  CAS  Google Scholar 

  127. Tomina, E.V., Mittova, I.Ya., Burtseva, N.A., and Sladkopevtsev, B.V., RF Patent 2548089, 2015.

  128. Tomina, E.V. and Ivanova, O.V., Microwave synthesis of bismuth orthopherrite, Kondens. Sredy Mezhfaznye Granitsy, 2018, vol. 20, no. 1, pp. 148–155. https://doi.org/10.17308/kcmf.2018.20/486

    Article  CAS  Google Scholar 

  129. Tomina, E.V., Perov, N.S., Mittova, I.Ya., Alekhina, Yu.A., Stekleneva, O.V., and Kurkin, N.A., Microwave synthesis and magnetic properties of bismuth ferrite nanopowder doped with cobalt, Russ. Chem. Bull., 2020, vol. 69, no. 5, pp. 941–946. https://doi.org/10.1007/s11172-020-2852-1

    Article  CAS  Google Scholar 

  130. Tomina, E.V., Pavlenko, A.A., and Kurkin, N.A., Synthesis of bismuth ferrite nanopowder doped with erbium ions, Kondens. Sredy Mezhfaznye Granitsy, 2021, vol. 23, no. 1, pp. 93–100. https://doi.org/10.17308/kcmf.2021.23/3309

    Article  Google Scholar 

  131. Lomanova, N.A., Semenov, V.G., Panchuk, V.V., and Gusarov, V.V., Structural changes in the homologous series of the Aurivillius phases Bin+1Fen–3Ti3O3n+3, J. Alloys Compd., 2012, no. 528, pp. 103–108. https://doi.org/10.1016/j.jallcom.2012.03.040

  132. Lomanova, N.A. and Gusarov, V.V., The limiting thickness of the perovskite-like block in the Aurivillius phases in the Bi2O3–Fe2O3–TiO2 system, Nanosyst.: Phys., Chem., Math., 2011, vol. 2, no. 3, pp. 93–101.

    Google Scholar 

  133. Lomanova, N.A., Pleshakov, I.V., Volkov, M.P., and Gusarov, V.V., Magnetic properties of Aurivillius phases Bim+1Fem–3Ti3O3m+3 with m = 5.5, 7, 8, Mater. Sci. Eng., B, 2016, vol. 214, pp. 51–56. https://doi.org/10.1016/j.mseb.2016.08.001

    Article  CAS  Google Scholar 

  134. Gubin, S.P., Koksharov, Yu.A., Khomutov, G.B., and Yurkov, G.Yu., Magnetic nanoparticles: preparation, structure and properties, Russ. Chem. Rev., 2005, vol. 74, no. 6, pp. 489–520. https://doi.org/10.1070/RC2005v074n06ABEH000897

    Article  CAS  Google Scholar 

  135. Hao, R., Xing, R., Xu, Z., Hou, Y., Gao, S., and Sun, S., Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles, Adv. Mater., 2010, vol. 25, no. 22, pp. 2729–2742. https://doi.org/10.1002/adma.201000260

    Article  CAS  Google Scholar 

  136. Sosnov, A.V., Ivanov, R.V., Balakin, K.V., Shobolov, D.L., Fedotov, Yu.A., and Kalmykov, Yu.M., Development of drug delivery systems using micro- and nanoparticles, Kach. Klin. Prakt., 2008, no. 2, pp. 4–12.

  137. Karimi, Z., Karimi, L., and Shokrollahi, H., Nano-magnetic particles used in biomedicine: core and coating materials, Mater. Sci. Eng., C, 2013, vol. 33, no. 5, pp. 2465–2475. https://doi.org/10.1016/j.msec.2013.01.045

    Article  CAS  Google Scholar 

  138. Korsakova, A.S., Kotsikau, D.A., Khaiduk, Yu.S., and Pankov, V.V., Synthesis and physicochemical properties of MnxFe3–xO4 solid solutions, Kondens. Sredy Mezhfaznye Granitsy, 2020, vol. 22, no. 4, pp. 466–472. https://doi.org/10.17308/kcmf.2020.22/3076

    Article  CAS  Google Scholar 

  139. Kotsikau, D., Pankov, V., Petrova, E., Natarov, V., Filimonov, D., and Pokholok, K., Structural, magnetic and hyperfine characterization of ZnxFe3–xO4 nanoparticles prepared by sol-gel approach via inorganic precursors, J. Phys. Chem. Solids, 2018, vol. 114, pp. 64–70. https://doi.org/10.1016/j.jpcs.2017.11.004

    Article  CAS  Google Scholar 

  140. Petrova, E., Kotsikau, D., Pankov, V., and Fahmi, A., Influence of synthesis methods on structural and magnetic characteristics of Mg–Zn–ferrite nanopowders, J. Magn. Magn. Mater., 2019, vol. 473, pp. 85–91. https://doi.org/10.1016/j.jmmm.2018.09.128

    Article  CAS  Google Scholar 

  141. Jadhav, J., Biswas, S., Yadav, A.K., Jha, S.N., and Bhattacharyya, D., Structural and magnetic properties of nanocrystalline Ni–Zn ferrites: in the context of cationic distribution, J. Alloys Compd., 2017, vol. 696, pp. 28–41. https://doi.org/10.1016/j.jallcom.2016.11.163

    Article  CAS  Google Scholar 

  142. Hajarpour, S., Gheisari, K., and Honarbakhsh Raouf, A., Characterization of nanocrystalline Mg0.6Zn0.4Fe2O4 soft ferrites synthesized by glycine-nitrate combustion process, J. Magn. Magn. Mater., 2013, vol. 329, pp. 165–169. https://doi.org/10.1016/j.jmmm.2012.10.023

    Article  CAS  Google Scholar 

  143. Daigle, A., Modest, J., Geiler, A.L., Gillette, S., Chen, Y., Geiler, M., Hu, B., Kim, S., Stopher, K., Vittoria, C., and Harris, V.G., Structure, morphology and magnetic properties of Mg(x)Zn(1–x)Fe2O4 ferrites prepared by polyol and aqueous co-precipitation methods: a low-toxicity alternative to Ni(x)Zn(1–x)Fe2O4 ferrites, Nanotechnology, 2011, vol. 22, no. 30, art. ID 305708. https://doi.org/10.1088/0957-4484/22/30/305708

    Article  CAS  PubMed  Google Scholar 

  144. Yang, Z.H., Li, Z.W., and Yang, Y.H., Structural and magnetic properties of plate-like W-type barium ferrites synthesized with a combination method of molten salt and sol–gel, Mater. Chem. Phys., 2014, vol. 144, no. 3, pp. 568–574. https://doi.org/10.1016/j.matchemphys.2014.01.043

    Article  CAS  Google Scholar 

  145. Manikandan, A., Vijaya, J.J., Sundararajan, M., Meganathan, C., Kennedy, L.J., and Bououdina, M., Optical and magnetic properties of Mg-doped ZnFe2O4 nanoparticles prepared by rapid microwave combustion method, Superlattices Microstruct., 2013, vol. 64, pp. 118–131. https://doi.org/10.1016/j.spmi.2013.09.021

    Article  CAS  Google Scholar 

  146. Somnath, S., Indu, S., Kotnala, R.K., Singh, M., Kumar, A., Dhiman, P., Singh, V.P., Verma, K., and Kumar, G., Structural, magnetic and Mössbauer studies of Nd-doped Mg–Mn ferrite nanoparticles, J. Magn. Magn. Mater., 2017, vol. 444, pp. 77–86. https://doi.org/10.1016/j.jmmm.2017.08.017

    Article  CAS  Google Scholar 

  147. Rashidi, S. and Ataie, A., One-step synthesis of CoFe2O4 nano-particles by mechanical alloying, Adv. Mater. Res., 2014, vol. 829, pp. 747–751. https://doi.org/10.4028/www.scientific.net/AMR.829.747

    Article  CAS  Google Scholar 

  148. Manova, E., Kunev, B., Paneva, D., Mitov, I., Petrov, L., Estournès, C., D’Orléan, C., Rehspringer, J.-L., and Kurmoo, M., Mechano-synthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4, Chem. Mater., 2004, vol. 16, no. 26, pp. 5689–5696. https://doi.org/10.1021/cm049189u

    Article  CAS  Google Scholar 

  149. Qu, Y., Yang, H., Yang, N., and Fan, Y., The effect of calcination temperature on the structural and magnetic properties of co-precipitated CoFe2O4 nanoparticles, Mater. Lett., 2006, vol. 60, nos. 29–30, pp. 3548–3552. https://doi.org/10.1016/j.matlet.2006.03.055

    Article  CAS  Google Scholar 

  150. Kim, Y.I., Kim, D., and Lee, C.S., Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method, Phys. B (Amsterdam), 2003, vol. 337, nos. 1–4, pp. 42–51. https://doi.org/10.1016/S0921-4526(03)00322-3

    Article  CAS  Google Scholar 

  151. Agú, U.A., Oliva, M.I., Marchetti, S.G., Heredia, A.C., Casuscelli, S.G., and Crivello, M.E., Synthesis and characterization of a mixture of CoFe2O4 and MgFe2O4 from layered double hydroxides: band gap energy and magnetic responses, J. Magn. Magn. Mater., 2014, vol. 369, pp. 249–259. https://doi.org/10.1016/j.jmmm.2014.06.046

    Article  CAS  Google Scholar 

  152. Rao, K.S., Nayakulu, S.V.R., Varma, M.C., Choudary, G.S.V.R.K., and Rao, K.H., Controlled phase evolution and the occurrence of single domain CoFe2O4 nanoparticles synthesized by PVA assisted sol–gel method, J. Magn. Magn. Mater., 2018, vol. 451, no. 1, pp. 602–608. https://doi.org/10.1016/j.jmmm.2017.11.069

    Article  CAS  Google Scholar 

  153. Cannas, C., Falqui, A., Musinu, A., Peddis, D., and Piccaluga, G., CoFe2O4 nanocrystalline powders prepared by citrate-gel methods: synthesis, structure and magnetic properties, J. Nanopart. Res., 2006, vol. 8, no. 2, pp. 255–267. https://doi.org/10.1007/s11051-005-9028-7

    Article  CAS  Google Scholar 

  154. Peng, J., Hojamberdiev, M., Xu, Y., Cao, B., Wang, J., and Wu, H., Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles, J. Magn. Magn. Mater., 2011, vol. 323, no. 1, pp. 133–137. https://doi.org/10.1016/j.jmmm.2010.08.048

    Article  CAS  Google Scholar 

  155. Manikandan, A., Sridhar, R., Antony, S.A., and Ramakrishna, S., A simple aloe vera plant-extracted microwave and conventional combustion synthesis: morphological, optical, magnetic and catalytic properties of CoFe2O4 nanostructures, J. Mol. Struct., 2014, vol. 1076, pp. 188–200. https://doi.org/10.1016/j.molstruc.2014.07.054

    Article  CAS  Google Scholar 

  156. Yan, C.H., Xu, Z.-G., Cheng, F.-X., Wang, Z.-M., Sun, L.-D., Liao, C.-S., and Jia, J.-T., Nanophased CoFe2O4 prepared by combustion method, Solid State Commun., 1999, vol. 111, no. 5, pp. 287–291. https://doi.org/10.1016/S0038-1098(99)00119-2

    Article  CAS  Google Scholar 

  157. Chandramohan, P., Srinivasan, M.P., Velmurugan, S., and Narasimhan, S.V., Cation distribution and particle size effect on Raman spectrum of CoFe2O4, J. Solid State Chem., 2011, vol. 184, no. 1, pp. 89–96. https://doi.org/10.1016/j.jssc.2010.10.019

    Article  CAS  Google Scholar 

  158. Shafi, K.V.P., Gedanken, A., Prozorov, R., and Balogh, J., Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles, Chem. Mater., 1998, vol. 10, no. 11, pp. 3445–3450. https://doi.org/10.1021/cm980182k

    Article  CAS  Google Scholar 

  159. Meskin, P.E., Ivanov, V.K., Churagulov, B.R., Baranchikov, A.E., and Tretyakov, Yu.D., Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4 and Ni0.5Zn0.5Fe2O4 powders, Ultrason. Sonochem., 2006, vol. 13, no. 1, pp. 47–53. https://doi.org/10.1016/j.ultsonch.2004.12.002

    Article  CAS  PubMed  Google Scholar 

  160. Baranchikov, A.Ye., Ivanov, V.K., and Tretyakov, Yu.D., Kinetics and mechanism of nickel ferrite formation under high temperature ultrasonic treatment, Ultrason. Sonochem., 2007, vol. 14, no. 2, pp. 131–134. https://doi.org/10.1016/j.ultsonch.2006.03.008

    Article  CAS  PubMed  Google Scholar 

  161. Nguyen, A.T., Nguyen, T.D., Mittova, V.O., Berezhnaya, M.V., and Mittova, I.Ya., Phase composition and magnetic properties of Ni1–xCoxFe2O4 nanocrystals with spinel structure, synthesized by co-precipitation, Nanosyst.: Phys., Chem., Math., 2017, vol. 8, no. 3, pp. 371–377. https://doi.org/10.17586/2220-8054-2017-8-3-371-377

    Article  CAS  Google Scholar 

  162. Zālīte, I., Heidemane, G., Palcevskis, E., and Maiorov, M., Properties of nanosized ferrite powders and sintered materials prepared by the co-precipitation technology, combined with the spray-drying method, Key Eng. Mater., 2017, vol. 721, pp. 295–299. https://doi.org/10.4028/www.scientific.net/KEM.721.295

    Article  Google Scholar 

  163. Petrova, E.G., Shavshukova, Ya.A., Kotsikau, D.A., Laznev, K.V., and Pankov, V.V., Synthesis of nano-dimensional cobalt-zinc ferrites by the low-temperature spray-drying with subsequent thermolysis, Vestsi Akad. Navuk Belarusi, Ser. Khim. Navuk, 2018, vol. 54, no. 4, pp. 406–412. https://doi.org/10.29235/1561-8331-2018-54-4-406-412

    Article  CAS  Google Scholar 

  164. Kotsikau, D., Ivanovskaya, M., Pankov, V., and Fedotova, Yu., Structure and magnetic properties of manganese–zinc-ferrites prepared by spray pyrolysis method, Solid State Sci., 2015, vol. 39, pp. 69–73. https://doi.org/10.1016/j.solidstatesciences.2014.11.013

    Article  CAS  Google Scholar 

  165. Das, H., Debnath, N., Toda, A., Kawaguchi, T., Sakamoto, N., Hoque, S.M., Shinozaki, K., Suzuki, H., and Wakiy, N., Controlled synthesis of dense MgFe2O4 nanospheres by ultrasonic spray pyrolysis technique: effect of ethanol addition to precursor solvent, Adv. Powder Technol., 2018, vol. 29, no. 2, pp. 283–288. https://doi.org/10.1016/j.apt.2017.11.014

    Article  CAS  Google Scholar 

  166. Pankov, V., Modified aerosol synthesis of nanostructured hexaferrite for magnetic media, J. Aerosol Sci., 1995, vol. 26, suppl. 1, pp. 5813–5815. https://doi.org/10.1016/0021-8502(95)97314-5

    Article  Google Scholar 

  167. Pankov, V., Modified aerosol synthesis for nanoscale hexaferrite particles preparation, Mater. Sci. Eng., A, 1997, vol. 224, nos. 1–3, pp. 101–107. https://doi.org/https://doi.org/10.1016/S0921-5093-(96)10565-7

    Article  Google Scholar 

  168. Petrova, E.G., Kotikov, D.A., Natarov, V.O., and Pan’kov, V.V., Physicochemical properties of magnetic nanoparticles Mg1–xZnxFe2O4 obtained by various methods, Vestsi Akad. Navuk Belarusi, Ser. Khim. Navuk, 2017, no. 1, pp. 22–30.

  169. Edmonds, K.M., Wang, K.Y., Campion, R.P., Neumann, A.C., Farley, N.R.S., Gallagher, B.L., and Foxon, C.T., High-Curie-temperature Ga1–xMnxAs obtained by resistance-monitored annealing, Appl. Phys. Lett., 2002, vol. 81, no. 5, p. 4991. https://doi.org/10.1063/1.1529079

    Article  CAS  Google Scholar 

  170. Edmonds, K.M., Boguslawski, P., Wang, K.Y., Campion, R.P., Novikov, S.N., Farley, N.R. S., Gallagher, B.L., Foxon, C.T., Sawicki, M., Dietl, T., and Nardelli, M.B., Mn interstitial diffusion in GaMnAs, Phys. Rev. Lett., 2004, vol. 92, no. 3, art. ID 037202. https://doi.org/10.1103/PhysRevLett.92.037201

    Article  CAS  Google Scholar 

  171. Sordillo, L.A., Pu, Y., Pratavieira, S., Budansky, Yu., and Alfano, R.R., Deep optical imaging of tissue using the second and third near-infrared spectral windows, J. Biomed. Opt., 2014, vol. 19, no. 5, art. ID 056004. https://doi.org/10.1117/1.JBO.19.5.056004

    Article  PubMed  Google Scholar 

  172. Sun, Y., Meng, Y., Dai, R., Yang, Y., Xu, Y., Zhu, S., Shi, Y., Xiu, F., and Wang, F., Slowing down photocarrier relaxation in Dirac semimetal Cd3As2 via Mn doping, Opt. Lett., 2019, vol. 44, no. 17, pp. 4103–4106. https://doi.org/10.1364/OL.44.004103

    Article  CAS  PubMed  Google Scholar 

  173. Zakhvalinskii, V.S., Nikulicheva, T.B., Lähderanta, E., Shakhov, M.A., Nikitovskaia, E.A., and Taran, S.V., Anomalous cyclotron mass dependence on the magnetic field and Berry’s phase in (Cd1–xyZnxMny)3As2 solid solutions, J. Phys.: Condens. Matter, 2017, vol. 29, no. 45, art. ID 455701. https://doi.org/10.1088/1361-648X/aa8bdb

    Article  CAS  Google Scholar 

  174. Medvedkin, G.A., Ishibashi, T., Nishi, T., Hayata, K., Hasegawa, Y., and Sato, K., Room temperature ferromagnetism in novel diluted magnetic semiconductor Cd1–xMnxGeP2, Jpn. J. Appl. Phys., 2000, vol. 39, no. 10, p. L949. https://doi.org/10.1143/JJAP.39.L949

    Article  CAS  Google Scholar 

  175. Medvedkin, G.A., Hirose, K., Ishibashi, T., Nishi, T., Voevodin, V.G., and Sato, K., New magnetic materials in ZnGeP2–Mn chalcopyrite system, J. Cryst. Growth, 2002, vol. 236, no. 4, pp. 609–612. https://doi.org/10.1016/S0022-0248(01)02396-X

    Article  CAS  Google Scholar 

  176. Choi, S., Cha, G.B., Hong, S.C., Cho, S., Kim, Y., Ketterson, J.B., Jeong, S.-Y., and Yi, G.-C., Room-temperature ferromagnetism in chalcopyrite Mn-doped ZnSnAs2 single crystals, Solid State Commun., 2002, vol. 122, nos. 3–4, pp. 165–167. https://doi.org/10.1016/S0038-1098(02)00094-7

    Article  CAS  Google Scholar 

  177. Demin, R.V., Koroleva, L.I., Marenkin, S.F., Mikhailov, S.G., Novotortsev, V.M., Kalinnikov, V.T., Aminov, T.G., Szymczak, R., Szymczak, H., and Baran, M., A new high-T C ferromagnet: manganese-doped CdGeAs2 chalcopyrite, Tech. Phys. Lett., 2004, vol. 30, pp. 924–926. https://doi.org/10.1134/1.1829344

    Article  CAS  Google Scholar 

  178. Koroleva, L.I., Pavlov, V.Yu., Zashchirinskii, D.M., and Marenkin, S.F., Magnetic and electrical properties of the chalcopyrite phase ZnGeAs2:Mn, Phys. Solid State, 2007, vol. 49, no. 11, p. 2121. https://doi.org/10.1134/S1063783414120361

    Article  CAS  Google Scholar 

  179. Koroleva, L.I., Zashchirinskii, D.M., Khapaeva, T.M., Marenkin, S.F., Fedorchenko, I.V., Szymczak, R., Krzumanska, B., Dobrovol’skii, V., and Kilanskii, L., Manganese-doped ZnSiAs2 chalcopyrite: a new advanced material for spintronics, Phys. Solid State, 2009, vol. 51, no. 2, pp. 303–308. https://doi.org/10.1134/S1063783409020164

    Article  CAS  Google Scholar 

  180. Young, S.M., Zaheer, S., Teo, J.C.Y., Kane, C.L., Mele, E.J., and Rappe, A.M., Dirac semimetal in three dimensions, Phys. Rev. Lett., 2012, vol. 108, no. 14, p. 140405. https://doi.org/10.1103/PhysRevLett.108.140405

    Article  CAS  PubMed  Google Scholar 

  181. Wang, Q., Li, C.-Z., Ge, S., Li, J.-G., Lu, W., Lai, J., Liu, X., Ma, J., Yu, D.-P., Liao, Z.-M., and Sun, D., Ultrafast broadband photodetectors based on three-dimensional Dirac semimetal Cd3As2, Nano Lett., 2017, vol. 17, no. 2, pp. 834–841. https://doi.org/10.1021/acs.nanolett.6b04084

    Article  CAS  PubMed  Google Scholar 

  182. Harris, D.K., Allen, P.M., Han, H.-S., Walker, B.J., Lee, J., and Bawendi, M.G., Synthesis of cadmium arsenide quantum dots luminescent in the infrared, J. Am. Chem. Soc., 2011, vol. 133, pp. 4676–4679. https://doi.org/10.1021/ja1101932

    Article  CAS  PubMed  Google Scholar 

  183. Lu, H., Zhang, X., and Jia, S., Topological phase transition in single crystals of (Cd1–xZnx)3As2, Sci. Rep., 2017, vol. 7, p. 3148. https://doi.org/10.1038/s41598-017-03559-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Laiho, R., Lisunov, K.G., Stamov, V.N., and Zakhvalinskii, V.S., Shubnikov-de Haas effect in (Cd1–xyZnxMny)3As2 far from the zero-gap state, J. Phys. Chem. Solids, 1996, vol. 57, pp. 1–5. https://doi.org/10.1016/0022-3697(95)00059-3

    Article  CAS  Google Scholar 

  185. Laiho, R., Lashkul, A.V., Lisunov, K.G., Lähderanta, E., Ojala, I., and Zakhvalinskii, V.S., The influence of Ni-rich nanoclusters on the anisotropic magnetic properties of CdSb doped with Ni, Semicond. Sci. Technol., 2006, vol. 21, no. 3, pp. 228–235. https://doi.org/10.1088/0268-1242/21/3/003

    Article  CAS  Google Scholar 

  186. He, L., Jia, Y., Zhang, S., Hong, X., Jin, C., and Li, S., Pressure-induced superconductivity in the three-dimensional topological Dirac semimetal Cd3As2, npj Quantum Mater., 2016, art. ID 16014. https://doi.org/10.1038/npjquantmats.2016.14

  187. Novotortsev, V.M., Kochura, A.V., and Marenkin, S.F., New ferromagnetics based on manganese-alloyed chalcopyrites A II B IV C 2 V, Inorg. Mater., 2010, vol. 46, no. 13, pp. 1421–1436. https://doi.org/10.1134/S0020168510130029

    Article  CAS  Google Scholar 

  188. Ashcheulov, A.A., Voronka, N.K., Marenkin, S.F., and Rarenko, I.M., Obtaining and using optimized cadmium antimonide materials, Neorg. Mater., 1996, vol. 32, no. 9, pp. 1049–1060.

    Google Scholar 

  189. Akai, H., Ferromagnetism and its stability in the diluted magnetic semiconductor (In, Mn)As, Phys. Rev. Lett., 1998, vol. 81, no. 14, pp. 3002–3005. https://doi.org/10.1103/PhysRevLett.81.3002

    Article  CAS  Google Scholar 

  190. Entel, P., Hoffmann, E., Wassermann, H.C.H.E.F., Crisan, V., Ebert, H., and Akai, H., Collinear and noncollinear magnetism in transition metal alloys, J. Phys. Soc. Jpn., A, 2000, vol. 69, pp. 112–116

  191. Arslanov, T.R., Mollaev, A.Yu., Kamilov, I.K., Arslanov, R.K., Kilanski, L., Trukhan, V.M., Chatterji, T., Marenkin, S.F., and Fedorchenko, I.V., Emergence of pressure-induced metamagnetic-like state in Mn-doped CdGeAs2 chalcopyrite, Appl. Phys. Lett., 2013, vol. 103, no. 19, art. ID 192403. https://doi.org/10.1063/1.4829746

    Article  CAS  Google Scholar 

  192. Marenkin, S.F., Novotortsev, V.M., Palkina, K.K., Mikhailov, S.G., and Kalinnikov, V.T., Preparation and structure of CdGeAs2 crystals, Inorg. Mater., 2004, vol. 40, no. 2, pp. 93–95. https://doi.org/10.1023/B:INMA.0000016079.37020.9d

    Article  CAS  Google Scholar 

  193. Koroleva, L.I., Zashchirinskii, D.M., Khapaeva, T.M., Morozov, A.I., Marenkin, S.F., Fedorchenko, I.V., and Szymczak, R., Manganese-doped CdGeAs2, ZnGeAs2 and ZnSiAs2 chalcopyrites: new materials for spintronics, J. Magn. Magn. Mater., 2011, vol. 323, no. 23, pp. 2923–2928. https://doi.org/10.1016/j.jmmm.2011.05.054

    Article  CAS  Google Scholar 

  194. Novotortsev, V.M., Marenkin, S.F., Koroleva, L.I., Kupriyanova, T.A., Fedorchenko, I.V., Szymczak, R., Kilanski, L., Domuchowski, V., and Kochura, A.V., Magnetic and electric properties of manganese-doped ZnSiAs2, Russ. J. Inorg. Chem., 2009, vol. 54, no. 9, pp. 1350–1354. https://doi.org/10.1134/S0036023609090022

    Article  Google Scholar 

  195. Mahadevan, P. and Zunger, A., Room-temperature ferromagnetism in Mn-doped semiconducting CdGeP2, Phys. Rev. Lett., 2002, vol. 88, no. 4, art. ID 047205. https://doi.org/10.1103/PhysRevLett.88.047205

    Article  CAS  PubMed  Google Scholar 

  196. Mahadevan, P., Osorio-Guillen, J.M., and Zunger, A., Origin of transition metal clustering tendencies in GaAs based dilute magnetic semiconductors, Appl. Phys. Lett., 2005, vol. 86, no. 17, art. ID 172504. https://doi.org/10.1063/1.1921359

    Article  CAS  Google Scholar 

  197. Meilkhov, E.Z. and Farzetdinova, R.M., Ruderman–Kittel–Kasuya–Yosida interaction of magnetic moments in nanosized systems, Phys. Rev. B, 2007, vol. 75, no. 5, art. ID 052402. https://doi.org/10.1103/PhysRevB.75.052402

    Article  CAS  Google Scholar 

  198. Marenkin, S.F., Izotov, A.D., Fedorchenko, I.V., and Novotortsev, V.M., Manufacture of magnetic granular structures in semiconductor-ferromagnet systems, Russ. J. Inorg. Chem., 2015, vol. 60, no. 3, pp. 295–300. https://doi.org/10.1134/S0036023615030146

    Article  CAS  Google Scholar 

  199. Marenkin, S.F., Fedorchenko, I.V., Izotov, A.D., and Vasil’ev, M.G., Physicochemical analysis of semiconductor-ferromagnet systems as a basis of synthesis of magnetic-granulated spintronic structures, Rensit, 2018, vol. 10, no. 3, pp. 395–402. https://doi.org/10.17725/rensit.2018.10.395

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ya. Mittova.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittova, I.Y., Perov, N.S., Tomina, E.V. et al. Multiferroic Nanocrystals and Diluted Magnetic Semiconductors as a Base for Designing Magnetic Materials. Inorg Mater 57, 1340–1366 (2021). https://doi.org/10.1134/S0020168521130033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521130033

Keywords:

Navigation