Skip to main content
Log in

Phase Composition and Structure of Zirconia-Based Ceramic Materials Prepared by Exothermic Synthesis

  • Published:
Inorganic Materials Aims and scope

Abstract—

Zirconia has been prepared by exothermic synthesis from solutions, using nitrates and a glycine–urea reducing agent. The phase composition of the synthesis products and the relationship between the zirconia polymorphs have been determined as functions of the amount and nature of the stabilizing oxide and the heat treatment temperature. The addition of 5% calcium and yttrium has been shown to ensure the preparation of a material with partial stabilization of tetragonal zirconia (50–70%) or complete stabilization of the tetragonal phase. The synthesized zirconia consists of flaky macroparticles of various sizes, which in turn consist of rounded nanocrystalline particles up to 100 nm in size. The crystallite size is 10–20 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Balkevich, V.L., Tekhnicheskaya keramika: uchebnoe posobie dlya vuzov (Engineering Ceramics: A Learning Guide for Higher Education Institutions), Moscow: Stroiizdat, 1984, p. 256.

  2. Andrianov, N.T., Balkevich, V.L., Belyakov, A.V., et al., Khimicheskaya tekhnologiya keramiki: uchebnoe posobie dlya vuzov (Chemical Technology of Ceramics: A Learning Guide for Higher Education Institutions), Guzman, I.Ya., Ed., Moscow: RIF Stroimaterialy, 2003, p. 496.

    Google Scholar 

  3. Strelov, K.K. and Mamykin, P.S., Tekhnologiya ogneuporov (Technology of Refractories), Moscow: Metallurgiya, 1978, p. 376.

  4. Boch, P. and Nièpce, J.-C., Ceramic Materials: Processes, Properties and Applications, New York: Wiley-I-STE, 2007, p. 592.

    Book  Google Scholar 

  5. Carter, C.B. and Norton, M.G., Ceramic Materials: Science and Engineering, Springer Series in Chemical Physics, New York: Springer, 2007, p. 716.

  6. Rutman, D.S., Toropov, Yu.S., and Pliner, S.Yu., Vysokoogneupornye materialy iz dioksida tsirkoniya (Highly Refractory Zirconia Materials), Moscow: Metallurgiya, 1985, p. 136.

  7. Primachenko, V.V. et al., Highly refractory stabilized zirconia crucibles produced by vibration casting for induction skull melting of platinum group metals, Lit’e Metall.: Nauchno-Proizvodstv. Zh., 2012, no. 3 (67), pp. 166–168.

  8. Zhigachev, A.O., Golovin, Yu.I., Umrikhin, A.V., Korenkov, V.V., Tyurin, A.I., Rodaev, V.V., and D’yachek, T.A., Keramicheskie materialy na osnove dioksida tsirkoniya (Zirconia-Based Ceramic Materials), Golovin, Yu.I., Ed., Moscow: TEKhNOSFERA, 2018, p. 358.

  9. Sornakumar, T., Advanced ceramic composite tool materials for metal cutting applications, Key Eng. Mater., 1996, vol. 114, pp. 173–188.

    Article  CAS  Google Scholar 

  10. Dow Whitney, E. and Vaidyanathan, N., Engineered ceramics for high speed machining, ASM Int. Conf. Proc., 1987, pp. 77–82.

  11. Charles, W., Ceramic cutting tools update, Manuf. Eng., 1988, vol. 100, pp. 81–86.

    Google Scholar 

  12. Mahato, N., Gupta, A., and Balani, K., Doped zirconia and ceria-based electrolytes for solid oxide fuel cells: a review, Nanomater. Energy, 2012, vol. 1, no. 1, pp. 27–45.

    Article  Google Scholar 

  13. Zhou, X.-D. and Singhal, S.C., Fuel cells. Solid oxide fuel cells: overview, Encyclopedia of Electrochemical Power Sources, 2009, pp. 1–16.

  14. Seongkook Oh, Junsuk Park, Jeong Woo Shin, and Byung Chan Yang, High performance low-temperature solid oxide fuel cells with atomic layer deposited-yttria stabilized zirconia embedded thin film electrolyte, J. Mater. Chem. A, 2018, pp. 7401–7408.

  15. Ossama Saleh Abd El-Ghany and Ashraf Husein Sherief, Zirconia based ceramics, some clinical and biological aspects: review, Future Dent. J., 2016, vol. 2, pp. 55–64.

    Article  Google Scholar 

  16. Chevalier, J. and Gremillard, L., Ceramics for medical applications: a picture for the next 20 years, J. Eur. Ceram. Soc., 2009, vol. 29, no. 7, pp. 1245–1255.

    Article  CAS  Google Scholar 

  17. Dearnley, P.A., A review of metallic, ceramic and surface-treated metals used for bearing surfaces in human joint replacements, Proc. Inst. Mech. Eng., Part H, 1999, vol. 213, no. 2, pp. 107–135.

    CAS  Google Scholar 

  18. Kauppi, E.I., Rönkkönen, E.H., Airaksinen, S.M.K., et al., Influence of H2S on ZrO2-based gasification gas clean-up catalysts: meoh temperature-programmed reaction study, Appl. Catal., B, 2012, nos. 111–112, pp. 605–613.

  19. Zhang, X., Su, H., Yang, X., and Zhang, X., Catalytic performance of a three dimensionally ordered macroporous Co/ZrO2 catalyst in Fischer–Tropsch synthesis, J. Mol. Catal. A: Chem., 2012, no. 360, pp. 16–25.

  20. Signoretto, M., Menegazzo, F., Contessotto, L., et al., Au/ZrO2: an efficient and reusable catalyst for the oxidative esterification of renewable furfural, Appl. Catal., B, 2013, no. 129, pp. 287–293.

  21. Nikiforov, S.V., Kortov, V.S., Kiryakov, A.N., Konev, S.F., and Men’shenina, A.A., Increasing the luminescence yield of zirconia, Tech. Phys. Lett., 2017, vol. 43, no. 12, pp. 1074–1076.

    Article  CAS  Google Scholar 

  22. Kiisk, V., Puust, L., Utt, K., Maaroos, A., Mandar, H., Viviani, E., Piccinelli, F., Saar, R., Joost, U., and Sildos, I., Photo-, thermo- and optically stimulated luminescence of monoclinic zirconia, J. Lumin., 2016, vol. 174, pp. 49–55.

    Article  CAS  Google Scholar 

  23. Gorelov, V.P., High-temperature phase transitions in ZrO2, Phys. Solid State, 2019, vol. 61, no. 7, pp. 1288–1293.

    Article  CAS  Google Scholar 

  24. Zavodinskii, V.G., Mechanism underlying the phase stability of magnesium- and calcium-doped zirconia, Perspekt. Mater., 2005, no. 2, pp. 5–9.

  25. Okovityi, V.V., Choosing oxides for zirconia stabilization in the fabrication of thermal barrier coatings, Nauka Tekh., 2015, no. 5, pp. 26–32.

  26. Fenech, J., Viazzi, C., Bonino, J.-P., et al., Morphology and structure of YSZ powders: comparison between xerogel and aerogel, Ceram. Int., 2009, vol. 35, pp. 3427–3433.

    Article  CAS  Google Scholar 

  27. Krivtsov, I.V., Ustimenko, A.V., Il’kaeva, M.V., and Avdin, V.V., Synthesis of zirconia nanoparticles via thermal decomposition of a zirconium complex with citric acid, Vestn. YuUrGU, Ser. Khim., 2013, vol. 5, no. 4, pp. 38–41.

    Google Scholar 

  28. Huang, W., Yang, J., Meng, X., Cheng, Y., Wang, C., Zou, B., Khan, Z., Zhen, W., and Cao, X., Effect of the organic additions on crystal growth behavior of ZrO2 nanocrystals prepared via sol–gel process, Chem. Eng. J., 2011, vol. 168, pp. 1360–1368.

    Article  CAS  Google Scholar 

  29. Tok, A.I.Y., Boey, F.Y.C., Du, S.W., and Wong, B.K., Flame spray synthesis of ZrO2 nano-particles using liquid precursors, Mater. Sci. Eng., B, 2006, vol. 130, pp. 114–119.

    Article  CAS  Google Scholar 

  30. Duran, C., Jia, Y., Sato, K., Hotta, Y., and Watari, K., Hydrothermal synthesis of nano ZrO2 powders, Key Eng. Mater., 2006, vols. 317–318, pp. 195–198.

    Article  Google Scholar 

  31. Liao, J., Zhou, D., Yang, B., Liu, R., and Zhang, Q., Sol–gel preparation and photoluminescence properties of tetragonal ZrO2:Y3+,Eu3+ nanophosphors, Opt. Mater., 2012, no. 35, pp. 274–279.

  32. Wang, S., Zhai, Y., Li, X., Yang, L., and Wang, K., Coprecipitation synthesis of MgO-doped ZrO2 nano powder, J. Am. Ceram. Soc., 2010, no. 89, pp. 3577–3581.

  33. Nogami, M. and Tomozawa, M., ZrO2-transformation-toughened glass-ceramics prepared by the sol–gel process from metal alkoxides, J. Mater. Sci. Lett., 2010, no. 69, pp. 99–102.

  34. Purohit, R.D., Saha, A.S., and Tyagi, A.K., Combustion synthesis of nanocrystalline ZrO2 powder: XRD, Raman spectroscopy and TEM studies, Mater. Sci. Eng., B, 2006, vol. 130, nos. 1–3, pp. 57–60.

    Article  CAS  Google Scholar 

  35. Jafari Ayoub, Z., Jafar Tafreshi, M., and Fazli, M., Effect of calcination temperature on the alumina–zirconia nanostructures prepared by combustion, Synth. JNS, 2013, vol. 2, pp. 457–461.

    Google Scholar 

  36. Boobalan, K., Vijayaraghavan, R., Chidambaram, K., Mudali, U., Mudali, K., and Raj, B., Preparation and characterization of nanocrystalline zirconia powders by the glowing combustion method, J. Am. Ceram. Soc., 2010, vol. 93, no. 11, pp. 3651–3656.

    Article  CAS  Google Scholar 

  37. Denisova, E.I., Ustyuzhaninova, I.A., Kartashov, V.V., Volkovich, V.A., Chernetskiy, I.V., and Vlasov, A.V., Glycine–nitrate combustion synthesis of ZrO2–Y2O3 nanopowders, Adv. Mater. Res., 2015, vol. 1103, pp. 37–43.

    Article  Google Scholar 

  38. Mimani, T. and Patil, K.C., Solution combustion synthesis of nanoscale oxides and their composites, Mater. Phys. Mech., 2001, no. 4, pp. 134–137.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Podbolotov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podbolotov, K.B., Khort, N.A. & Izobello, A.Y. Phase Composition and Structure of Zirconia-Based Ceramic Materials Prepared by Exothermic Synthesis. Inorg Mater 57, 1067–1076 (2021). https://doi.org/10.1134/S0020168521100113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521100113

Keywords:

Navigation