Skip to main content
Log in

Synthesis and Thermal Oxidation Stability of Nanocrystalline Niobium Diboride

  • Published:
Inorganic Materials Aims and scope

Abstract—

A method has been developed for the synthesis of nanocrystalline NbB2 powder with an average particle size of 65 nm. The material has been prepared by reacting Nb and amorphous B powders (1 : 2 ratio) in Na2B4O7, KCl, and KBr ionic melts after pretreatment with hydrogen and activation in a high-energy planetary mill for 40 min. The synthesis process was run for 32 h at 800°C in argon at a pressure of 4 MPa. The results demonstrate that, independent of the composition and nature of the melt, the process yields NbB2 nanoparticles with hexagonal symmetry (sp. gr. P6/mmm) and unit-cell parameters a = 0.3100–0.3108 nm and c = 0.3278–0.3298 nm. The products of the oxidation of the NbB2 nanoparticles with atmospheric oxygen during heating to 1000°C and isothermal oxidation at 400, 450, 500, 550, and 600°C have been characterized by thermal analysis, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray microanalysis, X-ray photoelectron spectroscopy, and IR frustrated total internal reflection spectroscopy. The rate constants for the oxidation of NbB2 nanoparticles at these temperatures have been determined to be 0.0013, 0.045, 0.47, 2.61, and 8.83 h–1, respectively. The oxidation onset temperature has been determined to be 310°C. The effective activation energy evaluated for the oxidation of NbB2 nanoparticles from the temperature dependence of rate constants is 220 ± 8 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Serebryakova, T.I., Neronov, V.A., and Peshev, P.D., Vysokotemperaturnye boridy (High-Temperature Borides), Chelyabinsk: Metallurgiya, 1991.

  2. Carenco, S., Portehault, D., Boissiere, C., Mezailles, N., and Sanchez, C., Nanoscaled metal borides and phosphides: recent developments and perspectives, Chem. Rev., 2013, vol. 113, no. 10, pp. 7981–8065.https://doi.org/10.1021/cr400020d

    Article  CAS  PubMed  Google Scholar 

  3. Andrievskii, R.A. and Spivak, I.I., Prochnost’ tugoplavkikh soedinenii i materialov na ikh osnove. Spravochnik (Strength of Refractory Compounds and Related Materials: A Handbook), Chelyabinsk: Metallurgiya, 1989.

  4. Prokhorov, A.M., Lyakishev, N.P., Burkhanov, G.S., and Dement’ev, V.A., High-purity transition-metal borides: promising materials for present-day technology, Inorg. Mater., 1996, vol. 32, no. 11, pp. 1195–1201.

    CAS  Google Scholar 

  5. Andrievski, R.A. and Khatchoyan, A.V., Nanomaterials in Extreme Environments, Fundamentals and Applications, Berlin: Springer, 2016.https://doi.org/10.1007/978-3-319-2533-2

  6. Matsudaira, T., Itoh, H., and Naka, S., Synthesis of niobium boride powder by solid-state reaction between niobium and amorphous boron, J. Less-Common Met., 1989, vol. 155, no. 2, pp. 207–214.https://doi.org/10.1016/0022-5088(89)90229-4

    Article  CAS  Google Scholar 

  7. Peshev, P., Leyarovska, L., and Bliznakov, G., On the borothermic preparation of some vanadium, niobium and tantalum borides, J. Less-Common Met., 1968, vol. 15, pp. 259–267.https://doi.org/10.1016/0022-5088(68)90184-7

    Article  CAS  Google Scholar 

  8. Jha, M., Ramanujachary, K.V., Lofland, S.E., Gupta, G., and Ganguli, A.K., Novel borothermal process for the synthesis of nanocrystalline oxides and borides of niobium, J. Dalton Trans., 2011, vol. 40, pp. 7879–7888.https://doi.org/10.1039/c1dt10468c

    Article  CAS  Google Scholar 

  9. Maeda, H., Yoshikawa, T., Kusakabe, K., and Morooka, S., Synthesis of ultrafine NbB2 powder by rapid carbothermal reduction in a vertical tubular reactor, J. Alloys Compd., 1994, vol. 215, pp. 127–334.https://doi.org/10.1016/0925-8388(94)90829-X

    Article  CAS  Google Scholar 

  10. Gai, P., Yang, Z., Shi, L., Chen, L., Zhao, A., Gu, Y., and Qian, Y., Low temperature synthesis of NbB2 nanorods by a solid-state reaction route, Mater. Lett., 2005, vol. 59, pp. 3550–3552.https://doi.org/10.1016/j.matlet.2005.07.051

    Article  CAS  Google Scholar 

  11. Ma, J., Du, Y., Wu, M., Li, G., Feng, Z., Guo, M., Sun, Y., Song, W., Lin, M., and Guo, X., A simple inorganic-solvent route to nanocrystalline niobium diboride, J. Alloys Compd., 2009, vol. 468, pp. 473–476.https://doi.org/10.1016/j.jallcom.2008.01.021

    Article  CAS  Google Scholar 

  12. Jothi, P.R., Yubuta, K., and Fokwa, B.P.T., A simple, general synthetic route toward nanoscale transition metal borides, Adv. Mater., 2018, vol. 30, no. 14, paper 1704181.https://doi.org/10.1002/adma.201704181

  13. Portehaut, D., Devis, S., Beaunier, P., Gervais, C., Giordano, C., Sanchez, C., and Antonietti, M., A general solution route toward metal boride nanocrystals, Angew. Chem., 2011, vol. 50, pp. 3262–3265.https://doi.org/10.1002/ange.201006810

    Article  Google Scholar 

  14. Jafari, M., Tajizadegan, H., Golabgir, M.H., Chami, A., and Torabio, O., Investigation on mechanochemical behavior of Al/Mg–B2O3–Nb system reactive mixtures to synthesize niobium diboride, J. Refract. Met. Hard Mater., 2015, vol. 50, pp. 86–92.https://doi.org/10.1016/j.ijrmhm.2014.10.017

    Article  CAS  Google Scholar 

  15. Balci, Ö., Aĝaoĝullari, D., Övecoĝlu, M.L., and Duman, I., Synthesis of niobium borides by powder metallurgy methods using Nb2O5, B2O3 and Mg blends, Trans. Nonferrous Met. Soc. China, 2016, vol. 26, pp. 747–758.https://doi.org/10.1016/S1003-6326(16)64165-1

    Article  CAS  Google Scholar 

  16. Motojima, S., Sugiyama, K., and Takahashi, Y., Chemical vapor deposition of niobium diboride (NbB2), J. Cryst. Growth, 1975, vol. 30, pp. 233–239.https://doi.org/10.1016/0022-0248(75)90094-9

    Article  CAS  Google Scholar 

  17. Kravchenko, S.E., Torbov, V.I., and Shilkin, S.P., Nanosized zirconium diboride: synthesis and properties, Russ. J. Inorg. Chem., 2011, vol. 56, no. 4, pp. 506–509.https://doi.org/10.1134/S0036023611040164

    Article  CAS  Google Scholar 

  18. Gupta, A., Singhal, V., and Pandey, O.P., Facile in-situ synthesis of NbB2 nanoparticles at low temperature, J. Alloys Compd., 2018, vol. 736, pp. 306–313.https://doi.org/10.1016/j.jallcom.2017.10.257

    Article  CAS  Google Scholar 

  19. Ilyushchenko, N.G., Anfinogenov, A.I., and Shurov, N.I., Vzaimodeistvie metallov v ionnykh rasplavakh (Interactions between Metals in Ionic Melts), Moscow: Nauka, 1991.

  20. Kravchenko, S.E., Domashnev, I.A., Dremova, N.N., Vinokurov, A.A., and Shilkin, S.P., Synthesis of vanadium diboride nanoparticles via reaction of amorphous boron with vanadium in KCl and Na2B4O7 ionic melts, Inorg. Mater., 2019, vol. 55, no. 5, pp. 443–448.https://doi.org/10.1134/S002016851905011X

    Article  CAS  Google Scholar 

  21. Volkova, L.S., Shulga, Yu.M., and Shilkin, S.P., Synthesis of nano-sized titanium diboride in a melt of anhydrous sodium tetraborate, Russ. J. Gen. Chem., 2012, vol. 82, no. 5, pp. 819–821.https://doi.org/10.1134/S1070363212050027

    Article  CAS  Google Scholar 

  22. Kravchenko, S.E., Vinokurov, A.A., Dremova, N.N., Nadkhina, S.E., and Shilkin, S.P., Synthesis of niobium diboride nanoparticles by the reaction of amorphous boron with niobium in KCl and Na2B4O7 ionic melts, Russ. J. Gen. Chem., 2021, vol. 91, no. 2, pp. 302–304.https://doi.org/10.1134/S1070363221020195

    Article  CAS  Google Scholar 

  23. Fokin, V.N., Fokina, E.E., and Shilkin, S.P., Synthesis of coarsely crystalline metal hydrides, Russ. J. Gen. Chem., 1996, vol. 66, no. 8, pp. 1210–1212.

    Google Scholar 

  24. Fokin, V.N., Fokina, E.E., Tarasov, B.P., and Shilkin, S.P., Synthesis of the tetragonal titanium dihydride in ultradispersed state, Int. J. Hydrogen Energy, 1999, vol. 24, nos. 2–3, pp. 111–114.https://doi.org/10.1016/S0360-3199(98)00070-6

    Article  CAS  Google Scholar 

  25. Trusov, B.G., Thermodynamic analysis of high-temperature states and processes and its practical implementation, Doctoral (Eng.) Dissertation, Moscow: Moscow State Tech. Univ., 1984.

  26. Sinyarev, G.B., Vasolin, N.A., Trusov, B.G., and Moiseev, G.K., Primenenie EVM dlya termodinamicheskikh raschetov metallurgicheskikh protsessov (Use of Computers for Thermodynamic Evaluation of Metallurgical Processes), Moscow: Nauka, 1982.

  27. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik (Phase Diagrams of Binary Metallic Systems: A Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, vol. 1.

    Google Scholar 

  28. Bolgar, A.S., Serbova, M.I., Fesenko, V.V., Serebryakova, T.I., and Isaeva, L.P., High-temperature enthalpy and heat capacity of niobium diboride, Teplofiz. Vys. Temp., 1980, vol. 18, no. 6, pp. 1180–1183.

    CAS  Google Scholar 

  29. Joyner, D.J. and Hercules, D.M., Chemical bonding and electronic structure of B2O3, H3BO3, and BN: ESCA, Auger, SIMS and SXS study, J. Chem. Phys., 1980, vol. 72, no. 2, pp. 1095–1108.https://doi.org/10.1063/1.439251

    Article  CAS  Google Scholar 

  30. Ong, C.W., Huang, H., Zheng, B., Kwok, R.W.M., Hui, Y.Y., and Lau, W.M., X-ray photoemission spectroscopy of nonmetallic materials: electronic structures of boron and BxOy , J. Appl. Phys., 2004, vol. 95, no. 7, pp. 3527–3534.https://doi.org/10.1063/1.1651321

    Article  CAS  Google Scholar 

  31. Sidorov, T.A. and Sobolev, N.N., Infrared and Raman spectra of boric anhydride: III. Interpretation of the vibrational spectrum of boric anhydride and calculation of the isotopic effect, Opt. Spektrosk., 1958, vol. 4, no. 1, pp. 9–16.

    CAS  Google Scholar 

  32. Bethell, D.E. and Sheppard, N., The infrared spectrum and structure of boric oxide, Trans. Faraday Soc., 1955, vol. 51, pp. 9–15.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Shared Analytical Facilities Center, Institute of Problems of Chemical Physics, Russian Academy of Sciences, and at the Shared Research Facilities Center, Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, state research targets for the Institute of Problems of Chemical Physics, Russian Academy of Sciences (theme state registration no. AAAA-A19-119061890019-5) and the Merzhanov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences (theme no. 44.1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Shilkin.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravchenko, S.E., Kovalev, D.Y., Vinokurov, A.A. et al. Synthesis and Thermal Oxidation Stability of Nanocrystalline Niobium Diboride. Inorg Mater 57, 1005–1014 (2021). https://doi.org/10.1134/S002016852110006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852110006X

Keywords:

Navigation