Skip to main content
Log in

Preparation of Niobium Carbide-Based High-Temperature Ceramics by Direct Niobium Carburization

  • Published:
Inorganic Materials Aims and scope

Abstract—

Stoichiometric niobium carbide (NbC) samples with a tailored shape have been synthesized by direct carburization of rolled metallic niobium in an atmosphere of an argon + ethylene gas mixture. Ceramics have been produced by reacting niobium metal with ethylene gas, through absorption of the carbon released on the niobium surface as a result of ethylene decomposition. Complete carburization has been shown to be accompanied by the formation of an anisotropic inner cavity, reflecting the initial shape of the sample, which is characteristic of ceramics produced using the oxidation-assisted engineering approach. We have studied the substructure, superconducting properties, and mechanical properties of NbC synthesized via high-temperature carburization of niobium foil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Woydt, M., Huang, S., Vleugels, J., Mohrbacher, H., and Cannizza, E., Potentials of niobium carbide as cutting tools and for wear protection, Int. J. Refract. Met. Hard Mater., 2018, vol. 72, pp. 380–387.

    Article  CAS  Google Scholar 

  2. Wei, B., Wang, Y., Zhao, Y., Wang, D., Song, G., Fu, Y., and Zhou, Y., Effect of NbC content on microstructure and mechanical properties of W–NbC composites, Int. J. Refract. Met. Hard Mater., 2018, vol. 70, pp. 66–76.

    Article  CAS  Google Scholar 

  3. Woydt, M. and Mohrbacher, H., The use of niobium carbide (NbC) as cutting tools and for wear resistant tribosystems, Int. J. Refract. Met. Hard Mater., 2014, vol. 49, pp. 212–218.

    Article  Google Scholar 

  4. Chebanenko, M.I., Danilovich, D.P., Lobinsky, A.A., Popkov, V.I., Rempel, A.A., and Valeeva, A.A., Novel high stable electrocatalyst based on non-stoichiometric nanocrystalline niobium carbide toward effective hydrogen evolution, Int. J. Hydrogen Energy, 2021, vol. 46, no. 32, pp. 16907–16916.

    Article  CAS  Google Scholar 

  5. Huang, S.G., Vleugels, J., Mohrbacher, H., and Woydt, M., NbC grain growth control and mechanical properties of Ni bonded NbC cermets prepared by vacuum liquid phase sintering, Int. J. Refract. Met. Hard Mater., 2018, vol. 72, pp. 63–70.

    Article  CAS  Google Scholar 

  6. Chevacharoenkul, S. and Davis, R.F., Hot isostatic pressing of niobium carbide, Mater. Sci. Eng., 1982, vol. 55, pp. 289–292.

    Article  CAS  Google Scholar 

  7. Shokod’ko, A.V., Shvorneva, L.I., Chernyavskii, A.S., and Solntsev, K.A., Preparation of niobium nitride by a single-step method, Perspekt. Mater., 2012, no. 3, pp. 87–91.

  8. Shevtsov, S.V., Kovalev, I.A., Ogarkov, A.I., Kannykin, S.V., Prosvirnin, D.V., Chernyavskii, A.S., and Solntsev, K.A., Structure and Hardness of Ceramics Produced through High-Temperature Nitridation of Titanium Foil, Inorg. Mater., 2018, vol. 54, no. 3, pp. 295–300.https://doi.org/10.1134/S0020168518030135

    Article  CAS  Google Scholar 

  9. Solntsev, K.A., Shustorovich, E.M., and Buslaev, Yu.A., Oxidative constructing of thin-walled ceramics (OCTC), Dokl. Chem., 2001, vol. 378, no. 4, pp. 143–149.

    Article  Google Scholar 

  10. The International Centre for Diffraction Data, 2003.

  11. Oliver, W. and Pharr, G., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, vol. 7, no. 6, pp. 1564–1583.

    Article  CAS  Google Scholar 

  12. Zhaoa, X., Togarub, M., Guob, Q., Weinbergerc, C.R., Lambersona, L., and Thompsonb, G.B., Carbon influence on fracture toughness of niobium carbides, J. Eur. Ceram. Soc., 2019, vol. 39, no. 16, pp. 5167–5173.

    Article  Google Scholar 

  13. Smith, J.F., Carlson, O.N., and De Avillez, R.R., The niobium–carbon system, J. Nucl. Mater., 1987, vol. 148, no. 1, pp. 1–16.

    Article  CAS  Google Scholar 

  14. Balko, J., Csanadi, T., Sedlak, R., Vojtko, M., Koval’cikova, A., Koval, K., Wyzga, P., and Naughton-Duszova, A., Nanoindentation and tribology of VC, NbC and ZrC refractory carbides, J. Eur. Ceram. Soc., 2017, vol. 37, no. 14, pp. 4371–4377.

    Article  CAS  Google Scholar 

  15. Muchiri, P.W., Mwalukuku, V.M., Korir, K.K., Amolo, G.O., and Makau, N.W., Hardness characterization parameters of niobium carbide and niobium nitride: a first principles study, Mater. Chem. Phys., 2019, no. 229, pp. 489–494.

  16. Bhattacharjee, K., Pati, S.P., and Maity, A., High critical field NbC superconductor on carbon spheres, Ber. Bunsen-Ges. Phys. Chem., 2016, vol. 18, no. 22, pp. 15218–15222.

    CAS  Google Scholar 

  17. Geerk, J. and Langguth, K.G., Implantation and diffusion of carbon into niobium carbide single crystals, Solid State Commun., 1977, vol. 23, no. 1, pp. 83–87.

    Article  CAS  Google Scholar 

  18. Geerk, J., The superconducting transition temperature of niobium carbide single crystals after implantation of light elements, Radiat Eff., 1980, vol. 48, nos. 1–4, pp. 35–36.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and higher Education, state research target no. 076-00328-21-00 (federal state budget funded science institution Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kovalev.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochanov, G.P., Rogova, A.N., Kovalev, I.A. et al. Preparation of Niobium Carbide-Based High-Temperature Ceramics by Direct Niobium Carburization. Inorg Mater 57, 1077–1082 (2021). https://doi.org/10.1134/S0020168521100058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521100058

Keywords:

Navigation