Skip to main content
Log in

High-Temperature Annealing of Cermet Materials Based on Ti–C–NiCr

  • Published:
Refractories and Industrial Ceramics Aims and scope

Cermet materials based on titanium carbide and nichrome that were prepared by SHS extrusion were annealed in an oxidizing atmosphere at high temperatures of 800, 900, 950, and 1000°C for 10 h. Dependences of weight gain and oxidation rate of the oxidized samples on temperature and annealing time were plotted. It was found using x-ray phase analysis and scanning electron microscopy that the carbide phases did not change stoichiometry, a new CrNi3 phase was detected, and oxide films (TiO2 and Cr2O) formed on the sample surfaces. TiC carbide grains grew from 2.79 to 3.4 μm as the annealing temperature increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. O. P. Solonenko, A. V. Smirnov, and A. E. Chesnokov, “Microstructure and morphology of powder particles TiC–NiCr, synthesized in plasma jet, at high-energy actions on components of initial composition Ti–C–NiCr,” AIP Conf. Proc., 1893, Art. No. 030003 – 1 (2017); DOI: https://doi.org/10.1063/1.5007461.

  2. O. P. Solonenko, V. E. Ovcharenko, V. Y. Ulianitsky, et al., “Effect of the microstructure of SHS powders of titanium carbide–nichrome on the properties of detonation coatings,” J. Surf. Invest.: x-ray, Synchrotron Neutron Tech., 10, Art. No. 1040 (2016); DOI: https://doi.org/10.1134/S1027451016050402.

  3. D. N. Avram, C. M. Davidescu, M. L. Dan, et al., “Corrosion resistance of NiCr(Ti) coatings for metallic bipolar plates,” Mater. Today: Proc., 72(2), 538 – 543 (2023); DOI: https://doi.org/10.1016/j.matpr.2022.09.007.

    Article  CAS  Google Scholar 

  4. R. Rakshit and A. K. Das, “A review on cutting of industrial ceramic materials,” Precis. Eng., 59, 90 – 109 (2019); DOI: https://doi.org/10.1016/j.precisioneng.2019.05.009.

    Article  Google Scholar 

  5. S. Maeng and S. Min, “Dry ultra-precision machining of tungsten carbide with patterned nano PCD tool,” Procedia Manuf., 48, 452 – 456 (2020); DOI: https://doi.org/10.1016/j.promfg.2020.05.068.

    Article  Google Scholar 

  6. M. S. Antipov, A. P. Chizhikov, A. S. Konstantinov, et al., “Sintered material based on titanium carbide to increase the service life of slide gates,” Refract Ind Ceram., 62(2), 208 – 211 (2021); DOI: https://doi.org/10.1007/s11148-021-00584-7.

    Article  CAS  Google Scholar 

  7. L. Chen, Z. Yang, L. Lu, et al., “Effect of TiC on the high-temperature oxidation behavior of WMoTaNbV refractory high entropy alloy fabricated by selective laser melting,” Int. J. Refract. Met. Hard Mater., 110, Art. No. 106027 (2023); DOI: https://doi.org/10.1016/j.ijrmhm.2022.106027.

  8. M. S. Varfolomeev and G. I. Shcherbakova, “Refractory compositions designed for highly heat-resistant ceramic molds in foundry practice,” Refract. Ind. Ceram., 59(3), 290 – 295 (2018); DOI: https://doi.org/10.1007/s11148-018-0223-3.

    Article  CAS  Google Scholar 

  9. S. Fashu, M. Lototskyy, M. W. Davids, et al., “A review on crucibles for induction melting of titanium alloys,” Mater. Des., 186, Art. No. 108295 (2020); DOI: https://doi.org/10.1016/j.matdes.2019. 108295.

  10. E. Heidari, S. M. A. Boutorabi, M. T. Honaramooz, et al., “Ablation casting of thin-wall ductile iron,” Int. J. Metalcast., 16(1), 166 (2021); DOI: https://doi.org/10.1007/s40962-021-00579-7.

    Article  Google Scholar 

  11. Q. Zhao, B. Ju, T. Guo, et al., “Preparation and fracture behavior of bionic layered SiCp/Al composites by tape casting and pressure infiltration,” Ceram. Int., 49(6), 9060 – 9068 (2023); DOI: https://doi.org/10.1016/j.ceramint.2022.11.062.

    Article  CAS  Google Scholar 

  12. S. Shevelev, E. Sheveleva, and O. Stary, “Investigation of the influence of the mode of heat treatment of the initial powder on the efficiency of sintering zirconium ceramics by dilatometry,” Bull. Karaganda Univ., Phys. Ser., 3, 17 – 24 (2021); DOI: https://doi.org/10.31489/2021Ph3/17-24.

  13. M. Hou, S. Guo, L. Yang, et al., “Microwave hot press sintering: New attempt for the fabrication of Fe-Cu pre-alloyed matrix in superhard material,” Powder Technol., 356, 403 – 413 (2019); DOI: https://doi.org/10.1016/j.powtec.2019.08.055.

    Article  CAS  Google Scholar 

  14. C. V. Ageev and V. L. Girshov, “Hot isostatic pressing in powder metallurgy,” Metalloobrabotka, No. 4 (88), 56 – 60 (2015).

    Google Scholar 

  15. Y. Xiao, L. Lang,W. Xu, et al., “Diffusion bonding of copper alloy and nickel-based superalloy via hot isostatic pressing,” J. Mater. Res. Technol., 19, 1789 – 1797 (2022); DOI: https://doi.org/10.1016/j.jmrt.2022.05.152.

    Article  CAS  Google Scholar 

  16. L. P. Babentsova and I. V. Antsiferova, “Features of selective laser sintering,” Tekhnol. Mashinostr., No. 5, 15 – 19 (2018).

  17. T. Ghaltaghchyan, H. Khachatryan, and K. Asatryan, “Effect of additives on selective laser sintering of silicon carbide,” Bol. Soc. Esp. Ceram. Vidrio, 2023; DOI: https://doi.org/10.1016/j.bsecv.2023.01.001.

    Article  Google Scholar 

  18. P. Bazhin, A. Chizhikov, A. Stolin, et al., “Long-sized rods of Al2O3–SiC–TiB2 ceramic composite material obtained by SHS-extrusion: Microstructure, x-ray analysis and properties,” Ceram. Int., 47(20), 28444 – 28448 (2021); DOI: https://doi.org/10.1016/j.ceramint.2021.06.262.

    Article  CAS  Google Scholar 

  19. P. M. Bazhin, A. M. Stolin, M. I. Alymov, et al., “Peculiarities of long products of ceramic material with a nanoscale structure by SHS-extrusion,” Perspekt. Mater., No. 11, 73 – 80 (2014).

  20. A. M. Stolin, P. M. Bazhin, A. S. Konstantinov, et al., “Production of large compact plates from ceramic powder materials by free SHS compaction,” Dokl. Akad. Nauk, 480(6), 681 – 683 (2018); DOI: https://doi.org/10.7868/S086956521818010X.

    Article  Google Scholar 

  21. P. M. Bazhin, A. M. Stolin, A. S. Konstantinov, et al., “Structural features of titanium boride-based layered composite materials produced by free SHS compression,” Dokl. Akad. Nauk, 488(3), 263 – 266 (2019); DOI: https://doi.org/10.31857/S0869-5652488 3263-266.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Bazhin.

Additional information

Translated from Novye Ogneupory, No. 6, pp. 34 – 38, June, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antipov, M.S., Bazhin, P.M., Chizhikov, A.P. et al. High-Temperature Annealing of Cermet Materials Based on Ti–C–NiCr. Refract Ind Ceram 64, 318–321 (2023). https://doi.org/10.1007/s11148-024-00844-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-024-00844-2

Keywords

Navigation