Skip to main content
Log in

Evaluation of the Atom Delocalization Energy in Inorganic Glasses

  • Published:
Inorganic Materials Aims and scope

Abstract

We examine the notion that atom delocalization, thought of as the limiting atom displacement from the local equilibrium position, is a process that reduces to local excitation in an elastic continuous medium. The atom delocalization energy estimated for inorganic glasses using the elastic continuum theory is in satisfactory agreement with that calculated using other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Einstein, A., Eine neue Bestimmung der Molekulardimenstionen, Ann. Phys., 1906, vol. 19, no. 3, pp. 289–306.

    Article  CAS  Google Scholar 

  2. Frenkel, J., Kineticheskaya teoriya zhidkostei (Kinetic Theory of Liquids), Moscow: Akad. Nauk SSSR, 1945.

  3. Sanditov, D.S., The nature of Poisson’s ratio of amorphous polymers and inorganic glasses and its relation to structure-sensitive properties, Usp. Fiz. Nauk, 2020, vol. 190, no. 4, pp. 355–370.

    Article  Google Scholar 

  4. Maxwell, J.C., On the dynamical theory of gases, Philos. Trans., 1867, vol. 157, pp. 49–88.

    Article  Google Scholar 

  5. Sanditov, D.S., Model of delocalized atoms in the physics of the vitreous state, J. Exp. Theor. Phys., 2012, vol. 115, no. 1, pp. 112–124.

    Article  CAS  Google Scholar 

  6. Sanditov, D.S. and Badmaev, S.S., Delocalized-atom model and properties of sulfophosphate glasses, Inorg. Mater., 2019, vol. 55, no. 1, pp. 55–60.

    Google Scholar 

  7. Sanditov, D.S. and Badmaev, S.S., Glass transition of liquids and frozen deformation of glass, Inorg. Mater., 2019, vol. 55, no. 10, pp. 1046–1053.

    Article  CAS  Google Scholar 

  8. Burshtein, A.I., Molekulyarnaya fizika (Molecular Physics), Novosibirsk: Nauka, 1986.

  9. Sanditov, D.S. and Bartenev, G.M., Fizicheskie svoistva neuporyadochennykh struktur (Physical Properties of Disordered Structures), Novosibirsk: Nauka, 1982.

  10. Sanditov, D.S. and Mashanov, A.A., Atomic displacement energy in amorphous compounds, Russ. J. Phys. Chem. A, 2016, vol. 90, no. 12, pp. 2492–2494.

    Article  CAS  Google Scholar 

  11. Landau, L.D. and Lifshitz, E.M., Teoriya uprugosti (Theory of Elasticity), Moscow: Nauka, 1965, 3rd ed.

  12. Sivukhin, D.V., Obshchii kurs fiziki. Mekhanika (General Course in Physics: Mechanics), chapter 10: Mekhanika uprugikh tel (Mechanics of Elastic Solids), Moscow: Nauka, 1979.

  13. Sangadiev, S.Sh., Darmaev, M.V., and Sanditov, D.S., Elastic moduli and Poisson’s ratio of amorphous polymers and glasses, Vysokomol. Soedin., Ser. A., 2020, vol. 62, no. 3, pp. 170–180.

    Google Scholar 

  14. Belomestnykh, V.N. and Tesleva, E.P., Interrelation between anharmonicity and lateral strain in quasi-isotropic polycrystalline solids, Tech. Phys., 2004, vol. 49, no. 8, pp. 1098–1100.

    Article  CAS  Google Scholar 

  15. Sanditov, D.S. and Belomestnykh, V.N., Relation between the parameters of the elasticity theory and averaged bulk modulus of solids, Tech. Phys., 2011, vol. 56, no. 11, pp. 1619–1623.

    Article  CAS  Google Scholar 

  16. Frenkel, J., Vvedenie v teoriyu metallov (Introduction to the Theory of Metals), Leningrad: Gostekhizdat, 1948.

  17. Coenen, M., Sprung im Ausdehnungskoeffizienten und Leerstellenkonzentration bei Tg von glasigen Systemen, Glastechn. Ber., 1977, vol. 50, no. 4, pp. 74–78.

    CAS  Google Scholar 

  18. Bartenev, G.M. and Sanditov, D.S., Relaksatsionnye protsessy v stekloobraznykh sistemakh (Relaxation Processes in Glassy Systems), Novosibirsk: Nauka, 1986.

  19. Mackenzie, J.D., High-pressure effects on oxide glasses: III. Densification in nonrigid state, J. Am. Ceram. Soc., 1964, vol. 47, pp. 76–81.

    Article  CAS  Google Scholar 

  20. Razumovskaya, I.V., Mukhina, L.V., and Bartenev, G.M., On the mechanism of microindentation-induced deformation of inorganic glass, Dokl. Akad. Nauk, 1973, vol. 213, no. 4, pp. 822–825.

    CAS  Google Scholar 

  21. Marx, J.W. and Sivertson, J.M., Temperature dependence of elastic moduli and internal friction of silica and glass, J. Appl. Phys., 1953, vol. 24, no. 1, pp. 81–87.

    Article  CAS  Google Scholar 

  22. Anderson, O.L. and Bommel, H.E., Ultrasonic absorption in fused silica at low temperatures and high frequencies, J. Am. Ceram. Soc., 1955, vol. 38, no. 4, pp. 125–131.

    Article  Google Scholar 

  23. Strakna, R.E. and Savage, H.T., Ultrasonic relaxation loss in SiO2, GeO2, B2O3, and As2O3 glass, J. Appl. Phys., 1964, vol. 35, no. 5, pp. 1445–1450.

    Article  CAS  Google Scholar 

  24. Sanditov, D.S. and Sangadiev, S.Sh., Plasticity and viscosity of glassy materials, Deform. Razrush. Mater., 2013, no. 3, pp. 2–7.

  25. Sanditov, D.S., Ojovan, M.I., and Darmaev, M.V., Glass transition criterion and plastic deformation of glass, Phys. B (Amsterdam: Neth.), 2020, vol. 582, paper 411914.

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, grant no. 3.5406.2017/8.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Sanditov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanditov, D.S., Mashanov, A.A. Evaluation of the Atom Delocalization Energy in Inorganic Glasses. Inorg Mater 57, 852–857 (2021). https://doi.org/10.1134/S0020168521080124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521080124

Keywords:

Navigation