Skip to main content
Log in

Selective Preparation of Olefins through Conversion of C2 and C3 Alcohols on NASICON-Type Phosphates

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied the catalytic activity of LiZr2(PO4)3-based NASICON-type phosphates for conversion of C2 and C3 aliphatic alcohols with the aim of selectively preparing C2–C4 olefins. Selectivity has been controlled via partial heterovalent substitutions of In3+ or Nb5+ for Zr4+ or Mo for phosphorus. We have investigated the structure and morphology of the synthesized catalysts. The nature of the dopants has been shown to play a key role in determining the selectivity of the catalysts studied. Partial In3+ substitution for Zr4+ improves the dehydrogenating properties of the materials, whereas partial substitutions of Nb5+ for Zr4+ and Mo6+ for P5+ improve their dehydrating properties. We have demonstrated the possibility of highly selective preparation of ethylene and butylenes from ethanol and of propylene from propanol-1 and propanol-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. De Reviere, A., Gunst, D., Sabbe, M., and Verberckmoes, A., Sustainable short-chain olefin production through simultaneous dehydration of mixtures of 1-butanol and ethanol over HZSM-5 and γ-Al2O3, J. Ind. Eng. Chem., 2020, vol. 89, pp. 257–272.

    Article  CAS  Google Scholar 

  2. Bhasin, M.M., McCain, J.H., Vora, B.V., and Pujadó, P.R., Dehydrogenation and oxydehydrogenation of paraffins to olefins, Appl. Catal., A, 2001, vol. 221, pp. 397–419.

  3. Rahimi, N., Moradi, D., Sheibak, M., and Moosavi, E., The influence of modification methods on the catalytic cracking of LPG over lanthanum and phosphorus modified HZSM-5 catalysts, Microporous Mesoporous Mater., 2016, vol. 234, pp. 215–223.

    Article  CAS  Google Scholar 

  4. Akah, A. and Al-Ghrami, M., Maximizing propylene production via FCC technology, Appl. Petrochem. Res., 2015, vol. 5, pp. 377–392.

    Article  CAS  Google Scholar 

  5. Corma, A., Corresa, E., Mathieu, Y., Sauvanaud, L., Al-Bogami, S., Al-Ghrami, M.S., and Bourane, A., Crude oil to chemicals: light olefins from crude oil, Catal. Sci. Technol., 2017, vol. 7, pp. 12–26.

    Article  CAS  Google Scholar 

  6. Outram, V., Lalander, C.A., Lee, J.G.M., Davies, E.T., and Harvey, A.P., Applied in situ product recovery in ABE fermentation, Biotechnol. Prog., 2017, vol. 33, pp. 563–579.

    Article  CAS  Google Scholar 

  7. De Leon Díaz, A., Cruz-Taboaday, Y., Esqueda-Barron, G., Alonso-Nuñez, S., Loera-Serna, A.M., Venezia, M.E., and de Fuentes-Moyado, S., Catalytic dehydration of 2 propanol over Al2O3–Ga2O3 and Pd/Al2O3–Ga2O3 catalysts, Catal. Today, 2020, vol. 356, pp. 339–348.

    Article  Google Scholar 

  8. Ali, A. and Zhio, C., Selective synthesis of α-olefins by dehydration of fatty alcohols over alumina–thoria mixed catalysts, Catal. Sci. Technol., 2020, vol. 11, pp. 345–387.

    Google Scholar 

  9. Kulkarni, D. and Wachs, I.E., Isopropanol oxidation by pure metal oxide catalysts: number of active surface sites and turnover frequencies, Appl. Catal., A, 2002, vol. 237, pp. 121–137.

  10. Pica, M., Zirconium phosphate catalysts in the XXI century: state of the art from 2010 to date, Catalysts, 2017, vol. 7, no. 6, paper 190.

  11. Li, D., Ni, W., and Hou, Zh., Conversion of biomass to chemicals over zirconium phosphate-based catalysts, Chin. J. Catal., 2017, vol. 38, pp. 1784–1793.

    Article  CAS  Google Scholar 

  12. Khanmohammadi, M., Amani, Sh., Garmarudi, A.B., and Niaei, A., Methanol to propylene process: perspective of the most important catalysts and their behavior, Chin. J. Catal., 2016, vol. 37, pp. 325–339.

    Article  CAS  Google Scholar 

  13. Lytkina, A.A., Orekhova, N.V., Ermilova, M.M., and Yaroslavtsev, A.B., The influence of the support composition and structure (MxZr1 – xO2 – Δ) of bimetallic catalysts on the activity in methanol steam reforming, Int. J. Hydrogen Energy, 2018, vol. 43, no. 1, pp. 198–207.

    Article  CAS  Google Scholar 

  14. Yaroslavtsev, A.B. and Stenina, I.A., Complex phosphates with the NASICON structure (AXB2(PO4)3), Russ. J. Inorg. Chem., 2006, vol. 51, pp. S97–S116.

    Article  Google Scholar 

  15. Park, H., Kang, M., Park, Y.-C., Jung, K., and Kang, B., Improving ionic conductivity of Nasicon (Na3Zr2Si2PO12) at intermediate temperatures by modifying phase transition behavior, J. Power Sources, 2018, vol. 399, pp. 329–336.

    Article  CAS  Google Scholar 

  16. Sam Oh, J., He, L., Plewa, A., Morita Yue, Zhao, M., Sakamoto, T., Song, X., Zhai, W., Zeng, K., and Lu, L., Composite NASICON (Na3Zr2Si2PO12) solid-state electrolyte with enhanced Na+ ionic conductivity: effect of liquid phase sintering, ACS Appl. Mater. Interfaces, 2019, vol. 11, no. 43, pp. 40125–40133.

    Article  Google Scholar 

  17. Fujitsu, S., Nagai, N., Kanazawa, T., and Yasui, I., Conduction paths in sintered ionic conductive material Na1 + xYxZr2 − x(PO4)3, Mater. Res. Bull., 1981, vol. 16, no. 10, pp. 1299–1309.

    Article  CAS  Google Scholar 

  18. Jalalian-Khakshour, A., Phillips, C.O., Jackson, L., Dunlop, T.O., Margadonna, S., and Deganello, D., Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity, J. Mater. Sci., 2020, vol. 55, pp. 2291–2302.

    Article  Google Scholar 

  19. Stenina, I.A. and Yaroslavtsev, A.B., Low- and intermediate-temperature proton-conducting electrolytes, Inorg. Mater., 2017, vol. 53, no. 3, pp. 253–262.

    Article  CAS  Google Scholar 

  20. Pet’kov, V.I., Mixed phosphates of metal cations in the oxidation states I and IV, Russ. Chem. Rev., 2012, vol. 81, no. 7, pp. 606–637.

    Article  Google Scholar 

  21. Mazumdar, D., Bose, D., Parthasarathy, G., and Gopal, E., High-pressure studies on lithium fast-ion conductors, J. Mater. Res., 1987, vol. 2, no. 3, pp. 366–373.

    Article  CAS  Google Scholar 

  22. Høj, J. and Engell, J., Ion conductivity of Nasicon ceramics: effects of texture and doping with B2O3 and A12O3, MRS Proc., 1988, vol. 135, pp. 301–307.

  23. Li, T.K., Hirschfeld, D.A., VanAken, S., Yang, Y. and Brown, J.J., The synthesis, sintering, and thermal properties of (Ca1 – xMgx)Zr4(PO4)6 (CMZP) ceramics, J. Mater. Res., 1993, vol. 8, no. 11, pp. 2954–2967.

    Article  CAS  Google Scholar 

  24. Sadykov, V.A., Pavlova, S.N., Zabolotnaya, G.V., Chaikina, M.V., Maksimovskaya, R.I., Tsybulya, S.V., Burgina, E.B., Zaikovskii, V.I., Litvak, G.S., Frolova, Yu.V., Kochubei, D.I., Kriventsov, V.V., Paukshtis, E.A., Aolomiichuk, V.N., Lunin, V.V., Kuznetsova, N.N., Agrawal, D.R., and Roy, R., Scientific bases for the synthesis of highly dispersed framework zirconium phosphate catalysts for paraffin isomerization and selective oxidation, Kinet. Katal., 2001, vol. 42, pp. 390–398.

    Article  CAS  Google Scholar 

  25. Sukhanov, M.V., Shchelokov, I.A., Ermilova, M.M., Orekhova, N.V., Pet’kov, V.I., and Tereshchenko, G.F., Catalytic properties of sodium zirconium molybdate phosphates in methanol transformations, Russ. J. Appl. Chem., 2008, vol. 81, pp. 17–22.

    Article  CAS  Google Scholar 

  26. Povarova, E.I., Pylinina, A.I., and Mikhalenko, I.I., Catalytic dehydrogenation of propanol-2 on Na–Zr phosphates containing Cu, Co, and Ni, Russ. J. Phys. Chem. A, 2012, vol. 86, no. 6, pp. 935–941.

    CAS  Google Scholar 

  27. Ermilova, M.M., Sukhanov, M.V., Borisov, R.S., Orekhova, N.V., Pet’kov, V.I., Novikova, S.A., Il’in, A.B., and Yaroslavtsev, A.B., Synthesis of the new framework phosphates and their catalytic activity in ethanol conversion into hydrocarbons, Catal. Today, 2012, vol. 193, pp. 37–41.

    Article  CAS  Google Scholar 

  28. Pylinina, A.I. and Mikhalenko, I.I., Influence of compensator ions in the anionic part of Na3ZrM(PO4)3 phosphate with M = Zn, Co, Cu on the acidity and catalytic activity in reactions of butanol-2, Russ. J. Phys. Chem. A, 2013, vol. 87, no. 3, pp. 372–375.

    Article  CAS  Google Scholar 

  29. Ilin, A.B., Orekhova, N.V., Ermilova, M.M., Cretin, M., and Yaroslavtsev, A.B., Conversion of aliphatic C1–C2 alcohols on In-, Nb-, Mo-doped complex lithium phosphates and HZr2(PO4)3 with NASICON-type structure, J. Alloys Compd., 2018, vol. 748, pp. 583–590.

    Article  CAS  Google Scholar 

  30. Pechini, M.P., US Patent 3 330 697, 1967.

  31. Stenina, I.A., Kislitsyn, M.N., Pinus, I.Yu., Arkhangel’skii, I.V., Zhuravlev, N.A., and Yaroslavtsev, A.B., Phase transformations and cation mobility in NASICON lithium zirconium double phosphates Li1 ± xZr2 – xMx(PO4)3 (M = Sc, Y, In, Nb, Ta), Russ. J. Inorg. Chem., 2005, vol. 50, no. 6, pp. 906–911.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

In our studies, we used equipment at the Analytical Center for Advanced Petroleum Refining and Petrochemistry Problems (Shared Research Facilities Center), Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences; the Novel Petrochemical Processes, Polymer Composites, and Adhesives Shared Research Facilities Center, Institute of Problems of Chemical Physics, Russian Academy of Sciences; and the Shared Physical Characterization Facilities Center, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, supported by the Russian Federation Ministry of Science and Higher Education through state research targets in the field of basic research.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. V. Orekhova or A. B. Yaroslavtsev.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’in, A.B., Ermilova, M.M., Orekhova, N.V. et al. Selective Preparation of Olefins through Conversion of C2 and C3 Alcohols on NASICON-Type Phosphates. Inorg Mater 57, 693–700 (2021). https://doi.org/10.1134/S0020168521070086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521070086

Keywords:

Navigation