Skip to main content
Log in

Effect of Mechanical Activation on the High-Temperature Oxidation Behavior of Galena

  • Published:
Inorganic Materials Aims and scope

Abstract

The high-temperature (up to 1000°C) oxidation behavior of natural galena after mechanical activation has been studied by thermogravimetry, differential thermal analysis, mass spectrometry, and X-ray diffraction. The results demonstrate that the nature of the energy stored during mechanical activation of galena influences its reactivity. Mechanical activation has been shown to influence the morphology of galena particles, and we have compared oxidation processes during continuous heating in flowing air before and after mechanical activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Marchenko, N.V., Vershinina, E.P., and Gil’debrandt, E.M., Metallurgiya tyazhelykh tsvetnykh metallov: elektronnoe uchebnoe posobie (Metallurgy of Heavy Nonferrous Metals: An Electronic Learning Guide), Krasnoyarsk: Inst. Povysheniya Kvalifikatsii Sibirsk. Federal’nyi Univ., 2009.

  2. Kulebakin, V.G., Prevrashchenie sul’fidov pri aktivirovanii (Activation-Induced Conversion of Sulfides), Novosibirsk: Nauka, 1983.

  3. Molchanov, V.I., Selezneva, O.G., and Zhirnov, E.N., Aktivatsiya mineralov pri izmel’chenii (Grinding-Induced Activation of Minerals), Moscow: Nedra, 1975.

  4. Litvintsev, V.S., Mel’nikova, T.N., Yatlukova, N.G., and Litvinova, N.M., Mechanical activation in ore preparation processes, Gornyi Zh., 2006, no. 6, pp. 95–96.

  5. Hu Hui-ping, Chen Qi-yuan, Yin Zhou-lan, He Yue-hui, and Huang Bai-yun, Mechanism of mechanical activation for sulfide ores, Trans. Nonferrous Met. Soc. China, 2007, vol. 17, pp. 205–211. https://doi.org/10.1016/S1003-6326(07)60073-9

    Article  CAS  Google Scholar 

  6. Baláž, P., Extractive Metallurgy of Activated Minerals, Kosice: Elsevier, 2000.

    Google Scholar 

  7. Khamkhash, A., Medvedev, A.S., and Krylova, L.N., Changes in the mineral phases during the processing of a copper sulfide concentrate, Russ. J. Non-Ferrous Met., 2007, vol. 48, no. 1, pp. 31–39. https://doi.org/10.3103/S1067821207010075

    Article  Google Scholar 

  8. Baláž, P., Influence of solid state properties on ferric chloride leaching of mechanically activated galena, Hydrometallurgy, 1996, vol. 40, no. 3, pp. 359–368. https://doi.org/10.1016/0304-386X(95)00011-5

    Article  Google Scholar 

  9. Godočíková, E., Baláž, P., Bastil, Z., and Barabec, L., Spectroscopic study of the surface oxidation of mechanically activated sulphides, Appl. Surf. Sci., 2002, vol. 200, pp. 36–47. https://doi.org/10.1016/S0169-4332(02)00609-8

    Article  Google Scholar 

  10. Tian, L., Zhang, T.A., Liu, Y., Lv, G.Z., and Tang, J.J., Oxidative acid leaching of mechanically activated sphalerite, Can. Metall. Q, 2017, vol. 57, no. 1, pp. 59–69. https://doi.org/10.1080/00084433.2017.1367884

    Article  CAS  Google Scholar 

  11. Hu, H.P., Chen, Q., Yin, Z., Zhang, P., and Ye, L., The thermal behavior of mechanically activated galena by thermogravimetry analysis, Metall. Mater. Trans. A, 2003, vol. 34, no. 13, pp. 793–797. https://doi.org/10.1007/s11661-003-0114-0

    Article  Google Scholar 

  12. Baláž, P., Baláž, M., Achimovičová, M., Bujňáková, Z., and Dutková, E., Chalcogenide mechanochemistry in materials science: insight into synthesis and applications (a review), J. Mater. Sci., 2017, vol. 52, pp. 11851–11890. https://doi.org/10.1007/s10853-017-1174-7

    Article  CAS  Google Scholar 

  13. Gulyaeva, R.I., Selivanov, E.N., Dorogina, G.A., Uporov, S.A., and Pryanichnikov, S.V., Structure and physical properties of natural sphalerites and galena from the Dal’negorsk deposit in the temperature range 4–300 K, Russ. Geol. Geophys., 2017, vol. 58, no. 8, pp. 990–999. https://doi.org/10.1016/j.rgg.2017.07.010

    Article  Google Scholar 

  14. Powder Diffraction File PDF4+, ICDD, 2019.

  15. DIFFRAC. EVA V5, Bruker AXS, 2010–2018.

  16. Laugier, J. and Checkcell Bochu, B., LMGP-Suite of Programs for the Interpretation of X-ray Experiments, Saint Martin d’Heres: ENSP Laboratoire des Matériaux et du Génie Physique, 2004. http://www.ccp14.ac.in/tutorial/lmgp/

  17. Rietveld, H.M., Line profiles of neutron powder-diffraction peaks for structure refinement, Acta Crystallogr., 1967, vol. 22, pp. 151–152. https://doi.org/10.1107/S0365110X67000234

    Article  CAS  Google Scholar 

  18. DIFFRAC Plus : TOPAS, Karlsruhe: Bruker AXS GmbH, 2008.

  19. NETZSCH Proteus Software. Thermal Analysis. Version 4.8.3.

  20. Outokumpu HSC Chemistry for Windows: Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database HSC, Version 6.2.8.

  21. Gorelik, S.S., Skakov, Yu.A., and Rostorguev, L.N., Rentgenograficheskii i elektronno-opticheskii analiz (X‑ray Diffraction and Electron-Optical Analysis), Moscow: Mosk. Inst. Stali i Splavov, 1994.

  22. Iveronova, V.I. and Revkevich, G.P., Teoriya rasseyaniya rentgenovskikh luchei (Theory of X-Ray Scattering), Moscow: Mosk. Gos. Univ., 1978, 2nd ed.

  23. Bogatyreva, E.V. and Ermilov, A.G., Effectiveness of the mechanical activation of loparite concentrate, Inorg. Mater., 2011, vol. 47, no. 9, pp. 1012–1018. https://doi.org/10.1134/S0020168511090032

    Article  CAS  Google Scholar 

  24. Zuev, V.V., Konstitutsiya, svoistva mineralov i stroenie zemli (energeticheskie aspekty) (Constitution and Properties of Minerals and Earth’s Structure: Energetic Aspects), St. Petersburg: Nauka, 2005.

  25. Fersman, A.E., Izbrannye trudy (Selective Works), Moscow: Akad. Nauk SSSR, 1958, vol. 4.

  26. Morgan, D.J., Warne, S.St.J., Warrington, S.B., and Nancarrow, P.H.A., Thermal decomposition reactions of caledonite and their products, Mineral. Mag., 1986, vol. 50, pp. 521–526. https://doi.org/10.1180/minmag.1986.050.357.16

    Article  CAS  Google Scholar 

  27. Abdel-Rehim, A.M., Thermal and XRD analysis of Egyptian galena, J. Therm. Anal. Calorim., 2006, vol. 86, no. 2, pp. 393–401. https://doi.org/10.1007/s10973-005-6785-6

    Article  CAS  Google Scholar 

  28. Ajersch, F. and Benlyamani, M., Thermogravimetric identification and analysis of reaction products during oxidation of solid or liquid sulfides, Thermochim. Acta, 1989, vol. 143, pp. 221–237. https://doi.org/10.1016/0040-6031(89)85061-0

    Article  CAS  Google Scholar 

  29. Malinowski, C., Analysis of the chemical reaction between PbSO4 and PbS, Thermochim. Acta, 1987, vol. 119, pp. 329–336. https://doi.org/doi 10.1016/0040-6031(87)80269-1

    Article  CAS  Google Scholar 

  30. Sadovnikov, S.I., Kozhevnikova, N.S., and Rempel, A.A., Oxidation of nanocrystalline lead sulfide in air, Russ. J. Inorg. Chem., 2011, vol. 56, no. 12, pp. 1864–1869. https://doi.org/10.1134/S0036023611120448

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Ural-M Shared Research Facilities Center.

Funding

The work was carried out according to the state assignment for IMET UB RAS using equipment of Collaborative usage centre “Ural-M”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Selivanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selivanov, E.N., Gulyaeva, R.I., Pikulin, K.V. et al. Effect of Mechanical Activation on the High-Temperature Oxidation Behavior of Galena. Inorg Mater 57, 547–554 (2021). https://doi.org/10.1134/S0020168521040130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521040130

Keywords:

Navigation