Skip to main content
Log in

Effect of Ta2O5 Precursor Morphology on Characteristics of Magnesiothermic Tantalum Powders

  • Published:
Inorganic Materials Aims and scope

Abstract—

We examine the effect of the morphology of tantalum pentoxide on the properties of tantalum powders prepared by reducing the oxide with magnesium vapor. The morphology of tantalum pentoxide used as a precursor is shown to influence the particle size composition and morphology of the synthesized tantalum powders and the capacitor anodes produced from them. Magnesiothermic tantalum powders are obtained that ensure a specific charge of capacitors at a level from 120 000 to 150 000 μC/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Zednicek, T., Tantalum Capacitors Potentials and Trends. https://ebom.com/2019/01/tantalum-capacitors-potentials-and-trends. Cited January 20, 2020.

  2. Freeman, Y. and Lessner, P., Tantalum Capacitors in Space Applications, ESA, 2018. https://passive-components.eu/tantalum-capacitors-in-space-applications/. Cited February 11, 2020.

  3. Hagymási, M., Otterstedt, R.D., Schnitter, Ch., et al., Pushing Tantalum Capacitors to the Limit: A Powder Manufacturers View to 300 V Anodizations and Beyond.https://passive-components.eu/pushing-tantalum-capacitors-to-the-limit-view-to-300-v-anodisations-and-beyond/. Cited February 11, 2020.

  4. Freeman, Y., Tantalum and Niobium-Based Capacitors: Science, Technology, and Applications, Berlin: Springer International, 2018.https://doi.org/10.1007/978-3-319-67870-2_2

  5. Orlov, V.M., Kolosov, V.N., Prokhorova, T.Yu., and Miroshnichenko, M.N., Technology of high-capacity tantalum capacitor powders, Tsvetn. Met., 2011, no. 11, pp. 30–35.

  6. Loffelholz, J., Behrens, F., and Schnitter, Ch., US Patent 8951328, 2015.

  7. Loffelholz, J., Seyeda, H., Wolf, R., Reichert, K., and Schnitter, Ch., US Patent 7485257, 2009.

  8. Orlov, V.M., Kryzhanov, M.V., and Kalinnikov, V.T., Magnesium reduction of tantalum oxide compounds, Dokl. Chem., 2014, vol. 457, no. 2, pp. 160–163.https://doi.org/10.1134/S0012500814080035

    Article  CAS  Google Scholar 

  9. Haas, H., Magnesium vapour reduced tantalum powders with very high capacitances, CARTS Europe 2004: 18th Annual Passive Components Conference, Nice, 2004, pp. 5–8.

  10. Haas, H., Schnitter, C., Sato, N., et al., Challenge: highest capacitance tantalum powders, CARTS Symp. Proc., Jacksonville, 2009, pp. 209–212.

  11. Gille, G., Shnitter, C., Brumm, H., Haas, H., Müller, R., and Bobeth, M., RF Patent 2493939, 2013.

  12. Orlov, V.M., Kolosov, V.N., Belyaevskii, A.T., et al., Effect of the reduction procedure on the morphology of sodium-reduced tantalum and niobium powders, Perspekt. Mater., 2013, no. 4, pp. 13–20.

  13. Upadhyaya, G.S., Powder metallurgical processing and metal purity: a case for capacitor grade sintered tantalum, Bull. Mater. Sci., 2005, vol. 28, no. 4, pp. 305–307.https://doi.org/10.1007/BF02704240

    Article  CAS  Google Scholar 

  14. Hajebi, S. and Abedeni, A., Thermal decomposition preparation and characterization of Ta2O5 nanoparticles with the aid of different acids and investigation of its photocatalyst application, J. Mater. Sci. – Mater. Electron., 2017, vol. 28, pp. 2009–2014.https://doi.org/10.1007/s10854-016-5758-9

    Article  CAS  Google Scholar 

  15. Manukumar, K.N., Kishore, B., Manjunath, K., and Nagaraju, G., Mesoporous Ta2O5 nanoparticles as an anode material for lithium ion battery and an efficient photocatalyst for hydrogen evolution, Int. J. Hydrogen Energy, 2018, vol. 43, pp. 18125–18135.https://doi.org/10.1016/j.ijhydene.2018.08.075

    Article  CAS  Google Scholar 

  16. Juxia Li, Weili Dai, Junqing Yan, et al., Hydrothermal synthesis and photocatalytic properties of tantalum pentoxide nanorods, Chin. J. Catal., 2015, vol. 36, no. 3, pp. 432–438.https://doi.org/10.1016/S1872-2067(14)60215-1

    Article  CAS  Google Scholar 

  17. Manukumar, K.N., Kishore, B., Viswanatha, R., and Nagaraju, G., Ta2O5 nanoparticles as an anode material for lithium ion battery, J. Solid State Electrochem., 2020, vol. 24, no. 4, pp. 1067–1074.https://doi.org/10.1007/s10008-020-04593-3

    Article  CAS  Google Scholar 

  18. Bose, D.K. and Gupta, C.K., Extractive metallurgy of tantalum, Miner. Process. Extr. Metall. Rev., 2002, vol. 22, no. 2, pp. 389–412.https://doi.org/10.1080/08827500208547422

    Article  Google Scholar 

  19. Singh, R.P., Processing of Ta2O5 powders for electronic applications, J. Electron. Mater., 2001, vol. 30, no. 12, pp. 1584–1594.https://doi.org/10.1007/s11664-001-0177-x

    Article  CAS  Google Scholar 

  20. Orlov, V.M. and Kryzhanov, M.V., Production of tantalum powders by the magnesium reduction of tantalates, Russ. Metall. (Engl. Transl.), 2015, no. 7, pp. 590–593.https://doi.org/10.1134/S0036029515070101

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Prokhorova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, V.M., Prokhorova, T.Y. & Belyaevskii, A.T. Effect of Ta2O5 Precursor Morphology on Characteristics of Magnesiothermic Tantalum Powders. Inorg Mater 57, 255–261 (2021). https://doi.org/10.1134/S0020168521030122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521030122

Keywords:

Navigation