Skip to main content
Log in

Synthesis of Nanocrystalline Powders in the CеO2〈ZrO2〉–Al2O3 System by the Citrate Sol–Gel Method

  • Published:
Inorganic Materials Aims and scope

Abstract—

Weakly aggregated, highly dispersed precursor powders with a specific surface area of 350–360 m2/g have been prepared by the citrate sol–gel method in the CеO2〈ZrO2〉–Al2O3 system. Heat treatment of the precursors in the temperature range 700–1000°C led to the formation of powders based on a fluorite-like Ce0.7Zr0.3O2 solid solution with a crystallite size under 30 nm. The presence of alumina has been shown to inhibit the Ce0.7Zr0.3O2 crystallite growth process. Using low-temperature nitrogen adsorption measurements, we have studied texture characteristics of the powders obtained at 1000°C: they have a specific surface area of 90 and 105 m2/g and a specific pore volume of up to 0.380 cm3/g, with a unimodal pore size distribution in the range 2.5–10 nm. We examine the effect of thermal “aging” at a temperature of 1000°C for 50 h on the structure and particle size of the powders. Based on the experimental data obtained, we propose a process for the synthesis of nanocrystalline mesoporous powders in the CеO2〈ZrO2〉–Al2O3 system for the preparation of supports of an active phase (Pt, Pd, or Rh) in three-way catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Anderson, J.A., Daley, R.A., Christou, S.Y., and Efstathiou, A.M., Regeneration of thermally aged Pt–Rh/CexZr1 – xO2–Al2O3 model three-way catalysts by oxychlorination treatments, Appl. Catal., B, 2006, vol. 64, nos. 3–4, pp. 189–200.https://doi.org/10.1016/j.apcatb.2005.12.007

    Article  CAS  Google Scholar 

  2. Ozawa, M., Okouchi, T., and Haneda, M., Three way catalytic activity of thermally degenerated Pt/Al2O3 and Pt/CeO2-ZrO2 modified Al2O3 model catalysts, Catal. Today, 2015, vol. 242, pp. 329–337. https://doi.org/10.1016 /j.cattod.2014.06.013

    Article  CAS  Google Scholar 

  3. Monte, R.D., Fornasiero, P., Kašpar, J., Rumori, P., Gubitosa, G., and Graziani, M., Pd/Ce0.6Zr0.4O2/Al2O3 as advanced materials for three-way catalysts: Part 1. Catalyst characterisation, thermal stability and catalytic activity in the reduction of NO by CO, Appl. Catal., B, 2000, vol. 24, nos. 3–4, pp. 157–167.https://doi.org/10.1016/S0926-3373(99)00102-2

    Article  Google Scholar 

  4. Li, J., Liu, X., and Zhan, W., Preparation of high oxygen storage capacity and thermally stable ceria–zirconia solid solution, Catal. Sci. Technol., 2016, vol. 6, pp. 897–907.https://doi.org/10.1039/C5CY01571E

    Article  CAS  Google Scholar 

  5. Priya, N.S., Somayaji, C., and Kanagaraj, S., Optimization of Ce0.6Zr0.4 – xAl1.3xO2 solid solution based on oxygen storage capacity, J. Nanopart. Res., 2014, vol. 16, no. 2, pp. 2214–2215.https://doi.org/10.1007/s11051-013-2214-0

    Article  CAS  Google Scholar 

  6. Ivanova, A.I., Physicochemical and catalytic properties of systems based on CeO2, Kinet. Catal., 2009, vol. 50, no. 6, pp. 797–815.https://doi.org/10.1134/S00231584090-60020

  7. Kuznetsova, T.G. and Sadykov, V.A., Specific features of the defect structure of metastable nanodisperse ceria, zirconia and related materials, Kinet. Catal., 2008, vol. 49, no. 6, pp. 840–858.https://doi.org/10.1134/S0023158408060098

    Article  CAS  Google Scholar 

  8. Monte, R., Kaspar, J., Bradshaw, H., and Norman, C., Rationale for the development of thermally stable nanostructured CeO2−ZrO2-containing mixed oxides, J. Rare Earths, 2008, vol. 26, no. 2, pp. 136–140.

    Article  Google Scholar 

  9. Ivanov, V.K., Polezhaeva, O.S., Kopitsa, G.P., Fedorov, P.P., Pranzas, K., and Runov, V.V., Specifics of high-temperature coarsening of ceria nanoparticles, Russ. J. Inorg. Chem., 2009, vol. 54, no. 11, pp. 1689–1696.https://doi.org/10.1134/S0036023609-110023

  10. Morozova, L.V., Kalinina, M.V., Arsent’ev, M.Yu., and Shilova, M.V., Influence of cryochemical and ultrasonic processing on the texture and thermal decomposition of xerogels and properties of nanoceramics in the ZrO2〈Y2O3〉–Al2O3 system, Inorg. Mater., 2017, vol. 53, no. 6, pp. 640–647.https://doi.org/10.1134/S0020168517060115

    Article  CAS  Google Scholar 

  11. Gusev, A.I., Nanomaterialy, nanostruktury, nanotekhnologii (Nanomaterials, Nanostructures, and Nanotechnologies), Moscow: Nauka–Fizmatlit, 2007, 2nd ed.

  12. Al’myasheva, O.V., Fedorov, B.A., Smirnov, A.V., and Gusarov, V.V., Size, morphology, and structure of zirconium dioxide nanopowder particles prepared under hydrothermal conditions, Nanosist.: Fiz., Khim., Mat., 2010, vol. 1, no. 1, pp. 26–37.

    Google Scholar 

  13. Pechini, M., US Patent, no. 3330697, 1967.

  14. Tai, L.W. and Lessing, P.A., Modified resin-intermediate processing of perovskite powders: Part II. Processing for fine, nonagglomerated Sr-doped lanthanum chromite powders, J. Mater. Res., 1992, no. 7, pp. 511–519.

  15. Worayingyong, A., Worayingyong, A., Kangvansura, P., Ausadasuk, S., and Praserthdam, P., The effect of preparation: Pechini and Schiff base methods, on adsorbed oxygen of LaCO3 perovskite oxidation catalysts, Colloids Surf., A, 2008, vol. 315, nos. 1–3, pp. 217–225.

    Article  CAS  Google Scholar 

  16. Tani, E., Yoshimura, M., and Somiy, S., Revised phase diagram of the system ZrO2–CeO2 below 1400°C, J. Am. Ceram. Soc., 1983, vol. 66, no. 7, pp. 506–510.https://doi.org/10.1111/j.1151-2916.1983.tb10591.x

    Article  Google Scholar 

  17. Panova, T.I., Arsent’ev, M.Yu., Morozova, L.V., and Drozdova, I.A., Synthesis and investigation of the structure of ceramic nanopowders in the ZrO2–CeO2–Al2O3 system, Glass Phys. Chem., 2010, vol. 36, no. 4, pp. 470–477.

    Article  CAS  Google Scholar 

  18. Morrison, R.T. and Boyd, R.N., Organic Chemistry, Boston: Allyn and Bacon, 1969, 2nd ed.

    Google Scholar 

  19. Gusev, A.I. and Kurlov, A.S., Particle (grain) size characterization of nanocrystalline materials, Metallofiz. Noveishie Tekhnol., 2008, vol. 30, no. 5, pp. 679–694.

    CAS  Google Scholar 

  20. Sing, K.S.W., Everett, D.H., and Haul, R.A.W., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 1985, vol. 57, pp. 603–619.

    Article  CAS  Google Scholar 

  21. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, New York.: Academic, 1982.

    Google Scholar 

  22. Simonenko, N.P., Sakharov, K.A., Simonenko, E.P., Sevastyanov, G.V., and Kuznetsov, N.T., Glycol−citrate synthesis of ultrafine lanthanum zirconate, Russ. J. Inorg. Chem., 2015, vol. 60, no. 12, pp. 1452–1458.https://doi.org/10.1134/S003602361512-0232

  23. Korolev, P.V., Knyazev, A.V., Gavrilov, I.R., Gavrilov, M.R., and Korolev, A.V., X-ray diffraction and calorimetric studies of powder nanocrystalline systems based on ZrO2(Y) and Al2O3 with second insoluble component, Phys. Solid State, 2012, vol. 54, no. 2, pp. 267–272.https://doi.org/10.1134/S1063783412020114

    Article  CAS  Google Scholar 

  24. Ivanova, A.S., Aluminum oxide and systems based on it: properties and applications, Kinet. Catal., 2012, vol. 53, no. 4, pp. 425–439.https://doi.org/10.1134/S0023158412040039

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.E. Lapshin for doing the X-ray diffraction work and to I.A. Drozdova for performing the electron-microscopic characterizations of the precursor powders.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education through the state research target for the Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences, as part of the research theme Inorganic Synthesis and Characterization of Ceramic and Organic–Inorganic Composite Materials and Coatings, state registration (Executive Branch’s Center for Information Technologies and Systems) no. AAAA-A19-119022290091-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Morozova.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, L.V. Synthesis of Nanocrystalline Powders in the CеO2〈ZrO2〉–Al2O3 System by the Citrate Sol–Gel Method. Inorg Mater 57, 154–163 (2021). https://doi.org/10.1134/S0020168521020096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521020096

Keywords:

Navigation