Skip to main content
Log in

Modeling of the Growth Kinetics of Vertically Aligned Carbon Nanotube Arrays on Planar Substrates and an Algorithm for Calculating Rate Coefficients of This Process

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have constructed a physicomathematical model for carbon nanotube growth and compared calculation results obtained in this model with experimental data. In our experimental work, carbon nanotube arrays were grown by chemical vapor deposition in flowing acetylene, ammonia, and argon at temperatures from 550 to 950°C. As a catalyst, we used a 4-nm-thick nickel film on the surface of titanium nitride. The proposed model takes into account the pyrolysis of hydrocarbons on the surface of catalyst nanoparticles; the formation of a surface barrier layer, which slows down and stops nanotube array growth; and interaction of the buffer layer with carbon in the catalyst nanoparticles. In constructing the model, we have examined mechanisms of the individual processes involved and obtained temperature dependences of the rate coefficients that describe nanotube growth. It is these dependences which ensure good agreement between calculation results and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bulyarskiy, S. and Saurov, A., Doping of Carbon Nanotubes, Cham: Springer International, 2017.https://doi.org/10.1007/978-3-319-55883-7

  2. Bulyarskiy, S.V., Zenova, E.V., Lakalin, A.V., Molodenskii, M.S., Pavlov, A.A., Tagachenkov, A.M., and Terent’ev, A.V., Influence of a buffer layer on the formation of a thin-film nickel catalyst for carbon nanotube synthesis, Tech. Phys., 2018, vol. 88, no. 12, pp. 1834–1839.https://doi.org/10.1134/S1063784218120253

    Article  Google Scholar 

  3. Hu, M.H., Murakami, Y., Ogura, M., Maruyama, S., and Okubo, T., Morphology and chemical state of Co–Mo catalysts for growth of single-walled carbon nanotubes vertically aligned on quartz substrates, J. Catal., 2004, vol. 225, no. 1, pp. 230–239.https://doi.org/10.1016/j.jcat.2004.04.013

    Article  CAS  Google Scholar 

  4. Gromov, D.G., Bulyarskii, S.V., Dubkov, S.V., Pavlov, A.A., Skorik, S.N., Trifonov, A.Yu., Shulyat’ev, A.S., Shaman, Yu.P., Kitsyuk, E.P., Dudin, A.A., Sirotina, A.P., and Gavrilov, S.A., CVD-growth of CNT with the use of catalytic Ct–Me–N–O thin films incorporated in the technology, Russ. Microelectron., 2017, vol. 46, no. 2, pp. 75–81.https://doi.org/10.1134/S1063739717020032

    Article  CAS  Google Scholar 

  5. Puretzky, A.A., Geohegan, D.B., Jesse, S., Ivanov, I.N., and Eres, G., In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition, Appl. Phys. A, 2005, vol. 81, pp. 223–240.https://doi.org/10.1007/s00339-005-3256-7

    Article  CAS  Google Scholar 

  6. Bulyarskiy, S.V., Lakalin, A.V., Pavlov, A.A., Dudin, A.A., Kitsyuk, E.P., Eganova, E.M., Sirotina, A.P., and Shamanaev, A.A., A Model of carbon-nanotube growth-rate limitation on thin-film catalysts, Tech. Phys. Lett., 2017, vol. 43, no. 4, pp. 366–368.https://doi.org/10.1134/S1063785017040198

    Article  CAS  Google Scholar 

  7. Dasgupta, K., Joshi, J.B., and Banerjee, S., Fluidized bed synthesis of carbon nanotubes – a review, Chem. Eng. J., 2011, vol. 171, pp. 841–869.https://doi.org/10.1016/j.cej.2011.05.038

    Article  CAS  Google Scholar 

  8. Kumar, M. and Ando, Y., Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production, J. Nanosci. Nanotechnol., 2010, vol. 10, no. 6, pp. 3739–3758.https://doi.org/10.1166/jnn.2010.2939

    Article  CAS  PubMed  Google Scholar 

  9. Tessonnier, J.P. and Su, D.S., Recent progress on the growth mechanism of carbon nanotubes: a review, Chem. Sus. Chem., 2011, vol. 4, pp. 824–847.https://doi.org/10.1002/cssc.201100175

    Article  CAS  Google Scholar 

  10. Saraswat, S.K., Sinha, B., Pant, K., and Gupta, R.B., Kinetic study and modeling of homogeneous thermocatalytic decomposition of methane over a Ni–Cu–Zn/Al2O3 catalyst for the production of hydrogen and bamboo-shaped carbon nanotubes, Ind. Eng. Chem. Res., 2016, vol. 55, pp. 11672–11680.https://doi.org/10.1021/acs.iecr.6b03145

    Article  CAS  Google Scholar 

  11. Krasnikov, D.V., Bokova-Sirosh, S.N., Tsendsuren, T.O., Romanenko, A.I., Obraztsova, E.D., Volodin, V.A., and Kuznetsov, V.L., Influence of the growth temperature on the defective structure of the multi-walled carbon nanotubes, Phys. Status Solidi B, 2018, vol. 255, paper 1700255–6.https://doi.org/10.1002/pssb.201700255

  12. Snoeck, J.-W., Froment, G.F., and Fowles, M., Kinetic study of the carbon filament formation by methane cracking on a nickel catalyst, J. Catal., 1997, vol. 169, pp. 250–262.https://doi.org/10.1006/jcat.1997.1635

    Article  CAS  Google Scholar 

  13. Becker, M.J., Xia, W., Xie, K., Dittmer, A., Voelskow, K., Turek, Th., and Muhler, M., Separating the initial growth rate from the rate of deactivation in the growth kinetics of multi-walled carbon nanotubes from ethane over a cobalt-based bulk catalyst in a fixed-bed reactor, Carbon, 2013, vol. 58, pp. 107–115.https://doi.org/10.1016/j.carbon.2013.02.038

    Article  CAS  Google Scholar 

  14. Gommes, C., Blacher, S., Bossuot, Ch., Marchot, P., Nagy, J.B., and Pirard, J.-P., Influence of the operating conditions on the production rate of multi-walled carbon nanotubes in a CVD reactor, Carbon, 2004, vol. 42, pp. 1473–1482.https://doi.org/10.1016/j.carbon.2004.01.063

    Article  CAS  Google Scholar 

  15. Shukrullah, S., Mohamed, N.M., Shaharun, M.S., and Naz, M.Y., Parametric study on vapor–solid–solid growth mechanism of multi-walled carbon nanotubes, Mater. Chem. Phys., 2016, vol. 176, pp. 32–43.https://doi.org/10.1016/j.matchemphys.2016.03.013

    Article  CAS  Google Scholar 

  16. Douven, S., Pirard, S.L., Heyen, G., Toye, D., and Pirard, J.-P., Kinetic study of double-walled carbon nanotube synthesis by catalytic chemical vapor deposition over an Fe–Mo/MgO catalyst using methane as the carbon source, Chem. Eng. J., 2011, vol. 175, pp. 396–407.https://doi.org/10.1016/j.cej.2011.08.066

    Article  CAS  Google Scholar 

  17. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik: V 3 t. (Phase Diagrams of Binary Metallic Systems: A Handbook in Three Volumes), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 2001, vol. 3, part 1.

  18. Khan, R.U., Bajohr, S., Graf, F., and Reimert, R., Modeling of acetylene pyrolysis under steel vacuum carburizing conditions in a tubular flow reactor, Molecules, 2007, vol. 12, no. 3, pp. 290–296.https://doi.org/10.3390/12030290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Song, Y. and Laursen, S., Control of surface reactivity towards unsaturated CAC bonds and H over Ni-based intermetallic compounds in semi-hydrogenation of acetylene, J. Catal., 2019, vol. 372, pp. 151–162.https://doi.org/10.1016/j.jcat.2019.02.018

    Article  CAS  Google Scholar 

  20. Fahmi, A. and Santen, R.A., Density functional study of acetylene and ethylene adsorption on Ni (111), Surf. Sci., 1997, vol. 371, pp. 53–62.https://doi.org/10.1016/S0039-6028(96)00974-0

    Article  CAS  Google Scholar 

  21. Zhukhovitskii, A.A. and Shvarman, L.F., Fizicheskaya khimiya (Physical Chemistry), Moscow: Metallurgiya, 1968.

  22. Bulyarskiy, S.V., Uglerodnye nanotrubki: tekhnologiya, upravlenie svoistvami, primenenie (Carbon Nanotubes: Technology, Control over Properties, and Application), Ul’yanovsk: Strezhen’, 2011.

  23. Volkov, A.I. and Zharenii, I.M., Bol’shoi khimicheskii spravochnik (Unabridged Chemical Handbook), Moscow: Sovremennaya Shkola, 2005.

  24. Samsonov, B.M. and Malkov, O.A., Thermodynamic model of crystallization and melting of small particles, Centr. Eur. J. Phys., 2004, vol. 2, no. 1, pp. 90–103.https://doi.org/10.2478/BF02476274

    Article  CAS  Google Scholar 

  25. Swalin, R.A., Thermodynamics of Solids, New York: Wiley, 1962.

    Google Scholar 

  26. Bulyarskiy, S.V. and Svetukhin, V.V., Fizicheskie osnovy upravleniya defektoobrazovaniem v poluprovodnikakh (Physical Principles Underlying Control over Defect Formation in Semiconductors), Ul’yanovsk: Ul’yanovsk. Gos. Univ., 2002.

  27. Bulyarskiy, S.V., Kitsyuk, E.P., Lakalin, A.V., Pavlov, A.A., and Ryazanov, R.M., Carbon solubility in a nickel catalyst with the growth of carbon nanotubes, Russ. Microelectron., 2020, vol. 49, no. 1, pp. 25–29.https://doi.org/10.1134/S1063739720010059

    Article  CAS  Google Scholar 

  28. Smithells, C.J., Metals Reference Book, London: Butterworths, 1976, 5th ed.

    Google Scholar 

  29. Damask, A.C. and Dienes, G.J., Point Defects in Metals, New York: Gordon and Breach, 1963.

    Google Scholar 

  30. Siegel, D.J. and Hamilton, J.C., Computational study of carbon segregation and diffusion within a nickel grain boundary, Acta Mater., 2005, vol. 53, pp. 87–96.https://doi.org/10.1016/j.actamat.2004.09.006

    Article  CAS  Google Scholar 

  31. Samsonov, V.M. and Khashin, V.A., Thermodynamic approaches to the problem of the phase state of nanoparticles, Kondens. Sredy Mezhfazn. Granitsy, 2007, vol. 9, no. 4, pp. 387–391. http://www.kcmf.vsu.ru/resources/t_09_4_2007_010.pdf

  32. Seah, C.-M., Chai, S.-P., Ichikawa, S., and Mohamed, A.R., Growth of uniform thin-walled carbon nanotubes with spin-coated Fe catalyst and the correlation between the pre-growth catalyst size and the nanotube diameter, J. Nanopart. Res., 2013, vol. 15, no. 1, paper 1371–10.https://doi.org/10.1007/s11051-012-1371-x

  33. Steplewska, A. and Borowiak-Palen, E., Study on the effect of the metal–support (Fe–MgO and Pt–MgO) interaction in alcohol-CVD synthesis of carbon nanotubes, J. Nanopart. Res., 2011, vol. 13, no. 5, pp. 1987–1994.https://doi.org/10.1007/s11051-010-9952-z

    Article  CAS  Google Scholar 

  34. Boskovic, G., Ratkovic, S., Kiss, E., and Geszti, O., Carbon nanotubes purification constrains due to large Fe–Ni/Al2O3 catalyst particles encapsulation, Bull. Mater. Sci., 2013, vol. 36, no. 1, pp. 1–7. https://www.ias.ac.in/article/fulltext/boms/036/01/0001-0007

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this work, we used a unique research facility: Combined Equipment System for Investigation of Heterogeneous Integration Technologies and Silicon–Carbon Nanotechnologies.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, project no. 0004-2019-0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Bulyarskiy.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulyarskiy, S.V., Lakalin, A.V., Molodenskii, M.S. et al. Modeling of the Growth Kinetics of Vertically Aligned Carbon Nanotube Arrays on Planar Substrates and an Algorithm for Calculating Rate Coefficients of This Process. Inorg Mater 57, 20–29 (2021). https://doi.org/10.1134/S0020168521010015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521010015

Keywords:

Navigation