Skip to main content
Log in

Calciothermic Reduction of Titanium Oxide Compounds

  • Published:
Inorganic Materials Aims and scope

Abstract—

The reduction of TiO2 and CaTiO3 in a mixture with calcium has been studied in an argon atmosphere and vacuum at temperatures in the range 1023–1123 K. The adiabatic temperature of the reduction reactions involved has been calculated as a function of the excess of calcium in the starting mixture and its initial temperature. The presence of a thin CaCl2 film on calcium particles and the use of calcium titanate as a precursor have been shown to increase the reduction rate. The use of a CaTiO3 precursor and CaCl2-activated calcium has made it possible to obtain titanium powders containing 0.5 wt % oxygen and having a specific surface area of 1.2 m2/g via reduction at a temperature of 1073 K for 6 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Garmata, V.A., Gulyanitskii, B.S., Kramnik, V.Yu., et al., Metallurgiya titana (Metallurgy of Titanium), Moscow: Metallurgiya, 1967.

  2. Okamoto, H., O–Ti (oxygen–titanium), J. Phase Equilib. Diffus., 2011, vol. 32, no. 5, pp. 473–474.

    Article  CAS  Google Scholar 

  3. Murray, J.L. and Wriedt, H.A., The O–Ti (oxygen–titanium) system, J. Phase Equilib., 1987, vol. 8, no. 2, pp. 148–165.

    Article  CAS  Google Scholar 

  4. Kikuchi, T., Yoshida, M., Matsuura, S., et al., Rapid reduction of titanium dioxide nano-particles by reduction with a calcium reductant, J. Phys. Chem. Solids, 2014, vol. 75, no. 9, pp. 1041–1048.

    Article  CAS  Google Scholar 

  5. Okabe, T.H., Oda, T., and Mitsuda, Y., Titanium powder production by preform reduction process (PRP), J. Alloys Compd., 2004, vol. 364, nos. 1–2, pp. 156–163.

    Article  CAS  Google Scholar 

  6. Zheng, H., Ito, H., and Okabe, T.H., Production of titanium powder by the calciothermic reduction of titanium concentrates or ore using the preform reduction process, Mater. Trans., 2007, vol. 48, no. 8, pp. 2244–2251.

    Article  CAS  Google Scholar 

  7. Wan, H., Xu, B., Dai, Y., et al., Preparation of titanium powders by calciothermic reduction of titanium dioxide, J. Cent. South Univ., 2012, vol. 19, no. 9, p. 2434.

    Article  CAS  Google Scholar 

  8. Xu, B., Yang, B., Jia, J., et al., Behavior of calcium chloride in reduction process of titanium dioxide by calcium vapor, J. Alloys Compd., 2013, vol. 576, no. 5, pp. 208–214.

    Article  CAS  Google Scholar 

  9. Jia, J., Xu, B., Yang, B., et al., Preparation of titanium powders from TiO2 by calcium vapor reduction, JOM, 2013 vol. 65, no. 5, pp. 630–635.

    Article  CAS  Google Scholar 

  10. Lei, X., Xu, B., Yang, G., et al., Direct calciothermic reduction of porous calcium titanate to porous titanium, Mater. Sci. Eng., 2018, vol. 91, no. 10, pp. 125–134.

    Article  CAS  Google Scholar 

  11. Orlov, V.M. and Kryzhanov, M.V., Calcium reduction of zirconium oxide compounds, Inorg. Mater., 2020, vol. 56, no. 7, pp. 734–738.

    Article  CAS  Google Scholar 

  12. Trusov, B.G., TERRA software suite for modeling phase and chemical equilibria in plasma chemical systems, 4 Mezhdunarodnyi simpozium po teoreticheskoi i prikladnoi plazmokhimii (4th Int. Symp. on Theoretical and Applied Plasma Chemistry), Ivanovo, 2005. http://main.isuct.ru/files/konf/ISTAPC2005/proc/2-11.pdf. Cited March 12, 2020.

  13. Orlov, V.M. and Kryzhanov, M.V., Thermodynamic modeling of the magnesiothermic reduction of magnesium and lithium tantalates, Inorg. Mater., 2015, vol. 51, no. 6, pp. 618–622.

    Article  CAS  Google Scholar 

  14. Nersisyan, H., Kwona, S.C., Rib, V., et al., Shape-controlled synthesis of titanium microparticles using calciothermic reduction concept, J. Solid State Chem., 2018, vol. 267, pp. 13–21.

    Article  CAS  Google Scholar 

  15. Orlov, V.M., Kryzhanov, M.V., and Kalinnikov, V.T., Magnesium reduction of tantalum oxide compounds, Dokl. Chem., 2014, vol. 457, no. 2, pp. 160–163.

    Article  CAS  Google Scholar 

  16. Orlov, V.M., Kryzhanov, M.V., and Kalinnikov, V.T., Magnesium-vapor reduction of niobium oxide compounds, Dokl. Chem., 2015, vol. 465, no. 1, pp. 257–260.

    Article  CAS  Google Scholar 

  17. Orlov, V.M. and Kolosov, V.N., Magnesiothermic reduction of tungsten and molybdenum oxide compounds, Dokl. Chem., 2016, vol. 468, no. 1, pp. 162–166.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Orlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, V.M., Kryzhanov, M.V. Calciothermic Reduction of Titanium Oxide Compounds. Inorg Mater 57, 30–37 (2021). https://doi.org/10.1134/S0020168520120134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520120134

Keywords:

Navigation