Skip to main content
Log in

On Deviations from Vegard’s Law at Increasing Pressure in Alloys

  • Published:
Inorganic Materials Aims and scope

Abstract

A method has been proposed for calculating the lattice parameter of binary substitutional solid solutions, which takes into account the presence of pressure (p) in alloys. The method has been applied to SiGe and CuAu alloys. It has been shown that, at p = 0, the deviation from Vegard’s law (Δl) results from the difference in compressibility and atomic volume between the pure constituent components of the alloys. With increasing pressure, Δl increases. According to our calculations, the Δl(p) of SiGe becomes positive at p0 = 0.685 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Fournet, G., Étude de la loi de Vegard, J. Phys. Radium, 1953, vol. 14, no. 6, pp. 374–380. https://doi.org/10.1051/jphysrad:01953001406037400

    Article  CAS  Google Scholar 

  2. Dismukes, J.P., Ekstrom, L., and Paff, R.J., Lattice parameter and density in germanium–silicon alloys, J. Phys. Chem., 1964, vol. 68, no. 10, pp. 3021–3027. https://doi.org/10.1021/j100792a049

    Article  CAS  Google Scholar 

  3. Pulikkotil, J.J., Chroneos, A., and Schwingenschlögl, U., Structure of Sn1 –xGex random alloys as obtained from the coherent potential approximation, J. Appl. Phys., 2011, vol. 110, no. 3, paper 036105. https://doi.org/10.1063/1.3618671

  4. Magomedov, M.N., On the nature of the covalent bond in crystals of carbon family elements, Russ. J. Inorg. Chem., 2004, vol. 49, no. 12, pp. 1906–1916.

    Google Scholar 

  5. Okamoto, H., Chakrabarti, D.J., Laughlin, D.E., and Massalski, T.B., The Au–Cu (gold–copper) system, Bull. Alloy Phase Diagrams, 1987, vol. 8, no. 5, pp. 454–473. https://doi.org/10.1007/BF02893155

    Article  CAS  Google Scholar 

  6. Holzapfel, W.B., Progress in the realization of a practical pressure scale for the range 1–300 GPa, High Press. Res., 2005, vol. 25, no. 2, pp. 87–96. https://doi.org/10.1080/09511920500147501

  7. Stankus, S.V., Khairulin, R.A., and Tyagel’skii, P.V., The thermal properties of germanium and silicon in condensed state, High. Temp., 1999, vol. 37, no. 4, pp. 529–534. https://doi.org/ mi.mathnet.ru/tvt2324

    CAS  Google Scholar 

  8. Electronic database. http://www.ioffe.ru/SVA/NSM/ Semicond/SiGe/thermal.html

  9. Amano, T., Beaudry, B., Gschneidner, K., Jr., Hartman, R., Vining, C., and Alexander, C., High-temperature heat contents, thermal diffusivities, densities, and thermal conductivities of n-type SiGe (GaP), p-type SiGe (GaP), and p-type SiGe alloys, J. Appl. Phys., 1987, vol. 62, no. 3, pp. 819–823. https://doi.org/10.1063/1.339712

    Article  CAS  Google Scholar 

  10. Ravi, V., Firdosy, S., Caillat, T., Brandon, E., Van Der Walde, K., Maricic, L., and Sayir, A., Thermal expansion studies of selected high-temperature thermoelectric materials, J. Electron. Mater., 2009, vol. 38, no. 7, pp. 1433–1442. https://doi.org/10.1007/s11664-009-0734-2

    Article  CAS  Google Scholar 

  11. Pavlova, L., Shtern, Y., and Kirilenko, E., Thermal expansion of bulk nanostructured n-type SiGe nanocomposite from 300 to 1400 K, J. Mater. Sci., 2017, vol. 52, no. 2, pp. 921–934. https://doi.org/10.1007/s10853-016-0387-5

    Article  CAS  Google Scholar 

  12. Magomedov, M.N., On the calculation of the Debye temperature and crystal–liquid phase transition temperature of a binary substitution alloy, Phys. Solid State, 2018, vol. 60, no. 5, pp. 981–988. https://doi.org/10.1134/S1063783418050190

    Article  CAS  Google Scholar 

  13. Magomedov, M.N., Changes in the thermodynamic properties of a Si–Ge solid solution at a decrease of the nanocrystal size, Phys. Solid State, 2019, vol. 61, no. 11, pp. 2145–2154. https://doi.org/10.1134/S1063783419110210

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to S.P. Kramynin, N.Sh. Gazanova, and Z.M. Surkhaeva for their assistance with this study and useful discussions.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-11013_mk) and the Presidium of the Russian Academy of Sciences (program no. 6, grant no. 2-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Magomedov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magomedov, M.N. On Deviations from Vegard’s Law at Increasing Pressure in Alloys. Inorg Mater 56, 903–908 (2020). https://doi.org/10.1134/S0020168520090125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520090125

Keywords:

Navigation