Skip to main content
Log in

On the Informativeness of X-Ray Diffraction Patterns in the Form of a Halo

  • Published:
Inorganic Materials Aims and scope

Abstract

We have assessed the informativeness of X-ray diffraction patterns in the form of a halo, characteristic of metallic alloys prepared by liquid quenching (melt spinning) (using an Fe78P20Si2 alloy as an example) and oxide films grown on unheated substrates by ion beam sputtering of targets with an appropriate composition (LiNbO3 and Ca10(PO4)6(OH)2). Simulation results for X-ray diffraction patterns of expected crystalline phases with allowance for the size effect in diffraction demonstrate that a model halo agrees well with the halos observed in X-ray diffraction patterns of the samples under study. Observed correlations lead us to conclude that, inherent in rather large crystals, coherence of elastically scattered waves is lost in the structures considered here because of the random mutual orientation of crystalline nuclei of the corresponding phases with ultimately small dimensions. For this reason, translational symmetry, limited by the ultimately small dimensions of mutually misoriented crystallites, is the most transparent characteristic of the nature of such (quasi-amorphous) structures for systems with strong interatomic bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. Russian Foundation for Basic Research, grant no. 17-03-01140 A.

  2. Russian Foundation for Basic Research, grant no. 18-29-11062.

  3. One example of such summation of extremely small volumes of coherently scattering space is epitaxial films in a discrete nucleation step.

REFERENCES

  1. Bol’shaya sovetskaya entsiklopediya (Big Soviet Encyclopedia), Moscow: Bol’shaya Sovetskaya Entsiklopediya, 1952, 2nd ed., vol. 2, p. 292.

  2. Hannay, N.B., Solid-State Chemistry, Englewood Cliffs: Prentice-Hall, 1967.

    Google Scholar 

  3. Ormont, B.F., Vvedenie v fizicheskuyu khimiyu i kristallokhimiyu poluprovodnikov: uchebnoe posobie (Introduction to the Physical Chemistry and Crystal Chemistry of Semiconductors: A Learning Guide), Moscow: Vysshaya Shkola, 1968.

  4. Karapet’yants, M.Kh. and Drakin, S.I., Stroenie veshchestva (Structure of Matter), Moscow: Vysshaya Shkola, 1970, 2nd ed.

  5. Amorphous Metallic Alloys, Luborsky, F.E., Ed., Boston: Butterworths, 1983.

    Google Scholar 

  6. Aleinikova, K.B., Zinchenko, E.N., and Zmeikin, A.A., Atomic Structure of the Amorphous Metallic Alloy Al83.5Ni9.5Si1.4La5.6, Glass Phys. Chem., 2018, vol. 44, no. 4, pp. 307–313.

    Article  CAS  Google Scholar 

  7. Skryshevskii, A.F., Strukturnyi analiz zhidkostei i amorfnykh tel (Structural Analysis of Liquids and Amorphous Solids), Moscow: Vysshaya Shkola, 1980, 2nd ed.

  8. Alder, B.J. and Weinwright, T.E., Phase transition for a hard sphere system, J. Chem. Phys., 1957, vol. 27, pp. 1208–1209.

    Article  CAS  Google Scholar 

  9. Barker, J.A., Hoare, M.R., and Finney, J.L., Relaxation of the Bernal model, Nature, 1975, vol. 257, pp. 120–122.

    Article  CAS  Google Scholar 

  10. Maeda, K. and Takeuchi, S., A simple computer modeling of metallic amorphous structure, J. Phys. F: Met. Phys., 1978, vol. 8, no. 12, pp. 283–288.

    Article  Google Scholar 

  11. Evteev, A.V. and Kosilov, A.T., General trends in structure self-organization of Fe83M17 (M = C, B, P) metallic glasses), Vestn. Voronezhsk. Gos. Tekh. Univ.,Ser. Materialoved., 1999, no. 1.5, pp. 53–60.

    Google Scholar 

  12. Sheng, H.W., Luo, W.K., Alamgir, F.M., et al., Atomic packing and short-to-medium range order in metallic glasses, Nature, 2006, vol. 439, pp. 419–425.

    Article  CAS  Google Scholar 

  13. Hui, X., Gao, R., and Chen, G., Short-to-medium range order in Mg65Cu25Y10 metallic glass, Phys. Lett. A, 2008, vol. 372, no. 17, pp. 3078–3084.

    Article  CAS  Google Scholar 

  14. Wang, C.C. and Wong, C.H., Short-to-medium range order of Al–Mg metallic glasses studied by molecular dynamics simulations, J. Alloys Compd., 2011, vol. 509, no. 42, pp. 10222–10229.

    Article  CAS  Google Scholar 

  15. Qi, L., Liu, M., and Zhang, S.L., Atomic packing and short-to-medium range order evolution of Zr–Pd metallic glass, Chin. Sci. Bull., 2011, vol. 56, no. 36, pp. 3908–3911.

    Article  CAS  Google Scholar 

  16. Sha, Z.D., Zhang, Y.W., Feng, Y.P., and Li, Y., Molecular dynamics studies of short to medium range order in Cu64Zr36 metallic glass, J. Alloys Compd., 2011, vol. 509, no. 33, pp. 8319–8322.

    Article  CAS  Google Scholar 

  17. Zhang, Y., Mattern, N., and Liang, T.X., Atomic packing short-to-medium range order in a U–Fe metallic glass, Appl. Phys. Lett., 2012, vol. 101, no. 2, paper 021909.

  18. Heidenreich, R.D., Fundamentals of Transmission Electron Microscopy, New York: Interscience, 1964. Translated under the title Osnovy prosvechivayushchei elektronnoi mikroskopii, Moscow: Mir, 1966, p. 471.

  19. Aleynikova, K.B. and Zinchenko, E.N., Fragment model as a phase analysis method for diffraction amorphous materials, Russ. J. Struct. Chem., 2009, vol. 50, no. 7, pp. 93–99.

    Article  Google Scholar 

  20. Abrosimova, G.E., Structural evolution of amorphous alloys, Usp. Fiz. Nauk, 2011, vol. 181, pp. 1265–1281.

    Article  Google Scholar 

  21. Glezer, A.M. and Shurygina, N.A., Amorfno-nanokristallicheskie splavy (Amorphous–Nanocrystalline Alloys), Moscow: Fizmatlit, 2013.

  22. Vavilova, V.V., Ievlev, V.M., Kannykin, S.V., Il’inova, T.N., Zabolotnyi, V.T., Korneev, V.P., Anosova, M.O., and Baldokhin, Yu.V., Nanocrystallization and change in the properties of an Fe80.2P17.1Mo2.7 amorphous alloy during heat or photon treatment, Russ. Metall. (Engl. Transl.), 2014, no. 6, pp. 888–894.

  23. Inoue, A., Yamamoto, M., Kimura, H.M., and Masumoto, T., Ductile aluminum-base amorphous alloys with two separate phases, J. Mater. Sci., 1987, vol. 6, pp. 194–199.

    CAS  Google Scholar 

  24. Yavari, A.R., On the structure of metallic glasses with double diffraction halos, Acta Metall., 1988, vol. 36, pp. 1863–1869.

    Article  CAS  Google Scholar 

  25. Vainshtein, B.K., Strukturnaya elektronografiya (Structural Analysis by Electron Diffraction), Moscow: Akad. Nauk SSSR, 1956.

  26. Hirsch, P.B., Howie, A., Nicholson, R.B., Pashley, D.W., and Whelan, M.J., Electron Microscopy of Thin Crystals, London: Butterworths, 1965.

    Google Scholar 

  27. Yatsenko, D.A. and Tsybulya, S.V., DIANNA (diffraction analysis of nanopowders): software for structural analysis of ultradisperse systems by X-ray methods, Bull. Russ. Acad. Sci.: Phys., 2012, vol, 76, no. 3, pp. 382–384.

    Article  CAS  Google Scholar 

  28. Rietveld, H., A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 1969, vol. 2, pp. 65–71.

    Article  CAS  Google Scholar 

  29. Degen, T., Sadki, M., Bron, E., König, U., and Nénert, G., The HighScore suite, Powder Diffr., 2014, vol. 29, no. 2, pp. 13–18.

    Article  Google Scholar 

  30. Cheary, R.W., Coelho, A.A., and Cline, J.P., Fundamental parameters line profile fitting in laboratory diffractometers, J. Res. Natl. Inst. Stand. Technol., 2004, vol. 109, pp. 1–25.

    Article  CAS  Google Scholar 

  31. https://materials.springer.com/

  32. Antonova, M.S., Belonogov, E.K., Boryak, A.V., Vavilova, V.V., Ievlev, V.M., Kannykin, S.V., and Palii, N.A., Photoactivated nanocrystallization and hardness of Fe78P20Si2 alloy, Inorg. Mater., 2015, vol. 51, no. 3, pp. 283–287.

    Article  CAS  Google Scholar 

  33. Vavilova, V.V., Kovneristyi, Yu.K., and Palii, N.A., Correlation between the short-range structure of amorphous alloys of the Fe–P–Si system and the crystal structure of the base metal (Fe), Dokl. Phys. Chem., 2000, vol. 372, nos. 4–6, pp. 79–81.

  34. ICDD PDF-2 00-054-0022.

  35. Harper, R.A. and Posner, A.S., Radial distribution study of non-crystalline tricalcium phosphate, Mater. Res. Bull., 1970, vol. 5, no. 2, pp. 129–136.

    Article  CAS  Google Scholar 

  36. Onuma, K. and Ito, A., Cluster growth model for hydroxyapatite, Chem. Mater., 1998, vol. 10, no. 11, pp. 3346–3351.

    Article  CAS  Google Scholar 

  37. Tadic, D., Veresov, A., Putlayev, V., and Epple, M., In-vitro preparation of nanocrystalline calcium phosphates as bone substitution materials in surgery, Mat.-Wiss. Werkstofftech., 2003, vol. 34, no. 12, pp. 1048–1051.

    Article  CAS  Google Scholar 

  38. Somrani, S., Rey, C., and Jemal, M., Thermal evolution of amorphous tricalcium phosphate, J. Mater. Chem., 2003, vol. 13, pp. 888–892.

    Article  CAS  Google Scholar 

  39. Budai, J., Gaudig, W., and Sass, S.L., The measurement of grain boundary thickness using X-ray diffraction techniques, J. Mater. Chem. A, 1979, vol. 40, no. 6, pp. 757–767.

    CAS  Google Scholar 

  40. Carter, C.B., Donald, A.M., and Sass, S.L., The study of grain boundary thickness using electron diffraction techniques, J. Mater. Chem. A, 1980, vol. 41, no. 4, pp. 467–475.

    CAS  Google Scholar 

  41. Hagege, S., Carter, C.B., and Cosandey, F., The variation of grain boundary structural width with misorientation angle and boundary plane, J. Mater. Chem. A, 1982, vol. 45, no. 4, pp. 723–740.

    CAS  Google Scholar 

  42. Lamarre, P. and Sass, S.L., Detection of the expansion at large angle 〈001〉 twist boundary using electron diffraction, Scr. Metall. Mater., 1983, vol. 17, no. 9, pp. 1141–1146.

    Article  CAS  Google Scholar 

  43. Burova, S.V., Faceting and structure of grain boundaries and interfaces in thin films, Extended Abstract of Cand. Sci. (Phys.–Math.) Dissertation, Voronezh: Voronezh Pedagogical Inst., 1985.

  44. ICDD PDF-2 00-043-1172.

Download references

ACKNOWLEDGMENTS

In this research, we used equipment at the Shared Research Facilities Center, Voronezh State University.

Funding

This work was supported by the Russian Foundation for Basic Research, grant nos. 17-03-01140 A (investigation of Fe78P20Si2 amorphous alloys) and 18-29-11062 (investigation of LiNbO3 films).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kannykin.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ievlev, V.M., Kannykin, S.V., Kostyuchenko, A.V. et al. On the Informativeness of X-Ray Diffraction Patterns in the Form of a Halo. Inorg Mater 56, 859–866 (2020). https://doi.org/10.1134/S0020168520080051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520080051

Keywords:

Navigation