Skip to main content
Log in

In situ X-ray measurements over large Q-space to study the evolution of oxide thin films prepared by RF sputter deposition

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Sputter deposition is a versatile and industrially important deposition technique for thin films, with increasing demand for matching the characteristics of thin film materials to specific requirements. The actual film properties are largely determined by sputtering parameters such as pressure conditions, temperature and power settings. By means of various X-ray diffraction and scattering techniques, it is shown that the characterization of film formation and growth is feasible in real time at synchrotron sources, thus adding an important dimension to the fundamental understanding of the evolution of thin film microstructure. In particular, grazing incidence small-angle X-ray scattering, grazing incidence X-ray powder diffraction and X-ray reflectometry are used in a complementary manner to study the influence of deposition temperature and substrate choice on the crystallization kinetics and growth of polycrystalline BaTiO\(_3\) films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Franz G (2009) Low pressure plasmas and microstructuring technology. Springer, Berlin

    Book  Google Scholar 

  2. Ohring M (1991) Materials science of thin films. Wiley, New York

    Google Scholar 

  3. Thornton JA (1974) Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J Vacuum Sci Technol 11:666

    Article  CAS  Google Scholar 

  4. Thornton JA (1977) High rate thick film growth. Annu Rev Mater Sci 7:239–260

    Article  CAS  Google Scholar 

  5. Thornton JA (1986) The microstructure of sputter-deposited coatings. J Vacuum Sci Technol A Vacuum Surf Films 4:3059

    Article  CAS  Google Scholar 

  6. Anders A (2010) A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films 518:4087–4090

    Article  CAS  Google Scholar 

  7. Walter P, Dippel A-C, Pflaum K, Wernecke J, van den Hurk J, Blume J, Klemradt U (2015) A compact and low-weight sputtering unit for in situ investigations of thin film growth at synchrotron radiation beamlines. Rev Sci Instr 86:053906

    Article  CAS  Google Scholar 

  8. Tynell T, Karppinen M (2015) Inorganic–organic superlattice thin films by atomic/molecular layer deposition. In: Mele P, Endo T, Arisawa S, Li C, Tsuchiya T (eds) Oxide thin films, multilayers, and nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-319-14478-8_9

    Chapter  Google Scholar 

  9. Wainer E, Solomon AN (1942) The structure of ferroelectric sodium niobate at room temperature. Titanium Alloy Manufacturing Co. Report No. 8, 3

  10. Wul BM, Goldman IM (1945) Dielectric constant of barium titanate as a function of strength of an alternating field. Compt Rend Acad Sci URSS 46:154–57

    Google Scholar 

  11. Ogawa T (1947) On barium titanate ceramics. Busseiron Kenkyo (in Japanese) 6:1–27

    Google Scholar 

  12. Gonzalo JA, Jimenez B (2005) Ferroelectricity. Wiley, VCH Verlag Weinheim

    Book  Google Scholar 

  13. Lines ME, Glass AM (2001) Principles and application of ferroelectrics and related materials. Oxford University Press Inc, New York

    Book  Google Scholar 

  14. d Araujo CP, Scott JF, Taylor GW (1996) Ferroelectric thin films: synthesis and basic properties. Gordon and Breach Publishers, Amsterdam

    Google Scholar 

  15. Rödel J, Jo W, Seifert KTP, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92:1153–1177

    Article  Google Scholar 

  16. Valencia S, Crassous A, Bocher L, Garcia V, Moya X, Cherifi RO, Deranlot C, Bouzehouane K, Fusil S, Zobelli A, Gloter a, Mathur ND, Gaupp A, Abrudan R, Radu F, Barthélémy A, Bibes M (2011) Interface-induced room-temperature multiferroicity in batio3. Nat Mater 10:753–8

  17. Tenne DA, Bruchhausen A, Lanzillotti-Kimura ND, Fainstein A, Katiyar RS, Cantarero A, Soukiassian A, Vaithyanathan V, Haeni JH, Tian W, Schlom DG, Choi KJ, Kim DM, Eom CB, Sun HP, Pan XQ, Li YL, Chen LQ, Jia QX, Nakhmanson SM, Rabe KM, Xi XX (2006) Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy. Science 313:1614–6

    Article  CAS  Google Scholar 

  18. Depla D, Mahieu S (2008) Reactive sputter deposition. Springer, Berlin

    Book  Google Scholar 

  19. Schwartzkopf M, Buffet A, Körstgens V (2013) From atoms to layers: in situ gold cluster growth kinetics during sputter deposition. Nanoscale 5:5053–5062

    Article  CAS  Google Scholar 

  20. Bommel S, Kleppmann N, Weber C, Spranger H, Schäfer P, Novak J, Roth S, Schreiber F, Klapp S, Kowarik S (2014) Unravelling the multilayer growth of the fullerene c60 in real time. Nat Commun 5:5388

    Article  CAS  Google Scholar 

  21. Liu T, Hou J, Wang B, Bai F, Chen H, Gao L, Cao Y, He H, Wang J, Wang N, Cao G, Guo Z (2016) Correlation between the in-plain substrate strain and electrocatalytic activity of strontium ruthenate thin films in dye-sensitized solar cells. J Mater Chem A 00:1–7

    Google Scholar 

  22. Baudelet F, Belkhou R, Briois V, Al E (2005) SOLEIL a new powerful tool for materials science. Oil Gas Sci 60:849–874

    Article  CAS  Google Scholar 

  23. Seeck O, Deiter C, Pflaum K, Bertam F, Beerlink A, Franz H, Horbach J, Schulte-Schrepping H, Murphy BM, Greve M, Magnussen O (2011) The high-resolution diffraction beamline p08 at petra iii. J Synchrotr Radiat 19:30–8

    Article  Google Scholar 

  24. Dawiec A, Garreau Y, Bisou J, Hustache S, Kanoute B, Picca F, Renaud G, Coati A (2016) Real-time control of the beam attenuation with XPAD hybrid pixel detector. J Instrum 11:P12018–P12018

    Article  Google Scholar 

  25. Yoneda Y (1963) Anomalous surface reflection of X rays. Phys Rev 131:2010–2013

    Article  Google Scholar 

  26. Renaud G, Garreau Y, Betinelli P, Tournieux A, Bisou J, Monteiro P, Elattaoui X (2013) Beamline fast and automatic attenuation system for X-ray detectors at Synchrotron Soleil. J Phys Confer Ser 425:8–12

    Article  Google Scholar 

  27. Parratt L (1954) Surface studies of solids by total reflection of X-rays. Phys Rev. https://doi.org/10.1103/PhysRev.95.359

    Article  Google Scholar 

  28. Bauer E (1958) Phänomenologische Theorie der Kristallabscheidung an Oberflächen. I. Zeitschrift fur Kristallographie 110:372–394

    Article  CAS  Google Scholar 

  29. Ohring M (1995) The materials science of thin films. In: Vacuum, vol 46. Academic Press, San Diego, Chap 7, p 85, 2nd ed

  30. Ohring M (1995) The materials science of thin films. In: Vacuum, vol  46. Academic Press, San Diego, Chap 5, p 85, 2nd ed

  31. Oura K, Lifshits V, Saranin A, Zotov A, Katayama M (2003) Surface science: an introduction. Advanced texts in physics. Springer, Berlin

  32. Franz G (2009) Low pressure plasmas and microstructuring technology. Springer, Berlin, Chap 4, pp 69–102

  33. Burle J, Fisher JM, Ganeva M, Pospelov G, Van Herck W, Wuttke J (2017) BornAgain: simulate and fit grazing incidence small-angle scattering.

  34. Vogel W (1998) X-ray diffraction from clusters. Cryst Res Technol 33

  35. Qiao L, Bi XF (2009) Microstructural orientation, strain state and diffusive phase transition of pure argon sputtered BaTiO3 film. J Phys D Appl Phys 42:175508

    Article  Google Scholar 

  36. David W, Shankland K, McCusker L, Bärlocher C (Eds) (2002) Structure determination from powder diffraction data. Oxford University Press. https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199205530.001.0001/acprof-9780199205530. Accessed 22 Sep 2020

  37. Fultz B, Howe JM (2007) Transmission electron microscopy and diffractometry of materials, 3rd Edn), p 58

  38. Rachwal JD (2010) X-ray diffraction applications in thin films and (100) silicon substrate stress analysis, Ph.D. thesis

Download references

Acknowledgements

The authors gratefully acknowledge K. Pflaum, J. Blume, L. Wilke, M. Fleck and H. Zink and the FS-EC group. Because of their work and efforts, the sputtering unit is operational. We further thank F. Bertram, R. Doehrmann, K. Schlage and U. Ruett from the FS-PE group for fruitful discussions and help during the different beam times. For help in creating the graphic Fig. 1., we are indebted to J. Frerichs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Walter.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walter, P., Wernecke, J., Scholz, M. et al. In situ X-ray measurements over large Q-space to study the evolution of oxide thin films prepared by RF sputter deposition. J Mater Sci 56, 290–304 (2021). https://doi.org/10.1007/s10853-020-05337-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05337-4

Navigation