Skip to main content
Log in

Thermodynamic Functions of PtS2 in a Wide Temperature Range

  • Published:
Inorganic Materials Aims and scope

Abstract—

The thermodynamic properties of crystalline platinum disulfide have been studied in the range from 5 to 875 K. The isobaric heat capacity of PtS2 has been determined by two methods: by adiabatic calorimetry from 5.32 to 344.96 K and by differential scanning calorimetry in the range 344.6–874.6 K. Using the experimental Cp(T) data, we evaluated the standard thermodynamic functions of platinum disulfide in a wide temperature range. The high-temperature Cp measurement results have been used to investigate regression models based on the Maier–Kelley and Khodakovsky equations for the temperature dependence of its isobaric heat capacity in the range from 298 to 875 K. The Debye characteristic temperature ΘD of PtS2 has been evaluated as a function of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Maslenitskii, I.N., Chugaev, L.V., Borbat, V.F., et al., Metallurgiya blagorodnykh metallov (Metallurgy of Noble Metals), Moscow: Metallurgiya, 1987.

  2. Betekhtin, A.G., Kurs mineralogii (A Course of Mineralogy), Moscow: Knizhnyi Dom Univ., 2007.

  3. Lyakishev, N.P., Diagrammy sostoyaniya dvoinykh metallicheskikh sistem. Spravochnik (Phase Diagrams of Binary Metallic Systems: A Handbook), Moscow: Mashinostroenie, 1997.

  4. Ripan, R. and Ceteanu, I., Chimia metalelor, vol. 2 of Chimia anorganica, Bucharest: Editura Didactica si Pedagogica, 1969.

  5. Westrum, E.F., Jr. and Carlson, H.G., Low-temperature heat capacities and thermodynamic functions of some palladium and platinum group chalcogenides: II. Dichalcogenides; PtS2, PtTe2, and PdTe2, J. Chem. Phys., 1961, vol. 35, no. 5, pp. 1670–1676.

    Article  CAS  Google Scholar 

  6. Sassani, D.C. and Shock, E.L., Department of Earth and Planetary Science, 1982, vol. 62, no. 15, pp. 2643–2671.

    Google Scholar 

  7. Wagman, D., Evans, W.H., and Parker, V.B., The NBS Tables of Chemical Thermodynamic Properties, Washington, DC: Am. Chem. Soc., 1982, vol. 11, p. 407.

    Google Scholar 

  8. Karpov, I.K., Kashik, S.A., and Pampura, V.D., Konstanty veshchestv dlya termodinamicheskikh raschetov v geokhimii i petrologii (Constants of Substances for Thermodynamic Calculations in Geochemistry and Petrology), Moscow: Nauka, 1968.

  9. Efimov, A.I., Belorikova, I.I., Vasil’kova, I.V., et al., Svoistva neorganicheskikh soedinenii. Spravochnik (Properties of Inorganic Compounds: A Handbook), Leningrad: Khimiya, 1983.

  10. Karzhavin, V.K., Thermodynamic properties of palladium and platinum sulfides, El.-Nauchn. Zh. Vestn. Otd. Nauk Zemle Ross. Akad. Nauk, 2004, no. 1 (22).

  11. Karzhavin, V.K., Sulfides, selenides, and tellurides of platinum and palladium: estimation of thermodynamic properties, Geochem. Int., 2007, vol. 45, no. 9, pp. 931–937.

    Article  Google Scholar 

  12. Naumov, G.B., Ryzhenko, B.N., and Khodakovsky, I.L., Spravochnik termodinamicheskikh velichin (dlya geologov) (A Handbook of Thermodynamic Quantities for Geologists), Moscow: Atomizdat, 1971.

  13. Furuseth, S., Selte, K., and Kjekshus, A., Redetermined crystal structures of NiTe2, PdTe2, PtS2, PtSe2 and PtTe2, Acta Chem. Scand., 1965, vol. 19, no. 1, pp. 257–258.

    Article  CAS  Google Scholar 

  14. Varushchenko, R.M., Druzhinina, A.I., and Sorkin, E.L., Low temperature heat capacity of 1-bromoperfluorooctane, J. Chem. Thermodyn., 1997, vol. 29, no. 6, pp. 623–637. https://doi.org/10.1006/jcht.1996.0173

    Article  CAS  Google Scholar 

  15. Ditmars, D.A., Ishihara, S., Chang, S.S., Bernstein, G., and West, E.D., Enthalpy and heat-capacity standard reference material: synthetic sapphire (alpha-Al2O3) from 10 to 2250 K, J. Res. Natl. Bur. Stand., 1982, vol. 87, no. 2, pp. 159–163. https://doi.org/10.6028/jres.087.012

    Article  CAS  Google Scholar 

  16. Iorish, V.S. and Tolmach, P.I., Procedure and program for spline fitting low-temperature experimental heat capacity data, Zh. Fiz. Khim., 1986, vol. 60, no. 10, pp. 2583–2587.

    CAS  Google Scholar 

  17. Gurevich, V.M. and Khlyustov, V.G., Calorimeter for determining low-temperature heat capacity of minerals. Heat capacity of quartz from 9 to 300 K, Geokhimiya, 1979, no. 6, pp. 829–839.

  18. Maier, C.G. and Kelley, K.K., An equation for the representation of high-temperature heat content data, J. Am. Chem. Soc., 1932, vol. 54, pp. 3243–3246.

    Article  CAS  Google Scholar 

  19. Stall, D.R., Westrum, E.F., and Zinke, G.S., The Chemical Thermodynamics of Organic Compounds, New York: Wiley, 1969.

    Google Scholar 

  20. Yokokawa, H., Tables of thermodynamic. properties of inorganic compounds, J. Natl. Chem. Lab. Ind. Jpn., 1988, vol. 83, pp. 147–173.

    Google Scholar 

  21. Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties of Gases and Liquids, New York: McGraw-Hill, 1977, 3rd ed.

    Google Scholar 

  22. Haas, J.L., Jr. and Fisher, J.R., Simultaneous evaluation and correlation of thermodynamic data, Am. J. Sci., 1976, vol. 276, pp. 525–545.

    Article  CAS  Google Scholar 

  23. Holland, T.J.B. and Powell, R., An internally consistent thermodynamic dataset with uncertainties and correlations; 2. Data and results, J. Metamorph. Geol., 1985, no. 3, pp. 343–370.

  24. Berman, R.G. and Brown, T.H., The heat capacity of minerals in the system K2O–Na2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2: representation, estimation, and high temperature extrapolation, Contrib. Mineral. Petrol., 1985, vol. 89, pp. 168–183.

    Article  CAS  Google Scholar 

  25. Richet, P., Gillet, P., and Fiquet, G., Thermodynamic properties of minerals: macroscopic and microscopic approaches, Thermodynamic Data: Systematics and Estimation, Saxena S.K. et al., Eds., Advances in Physical Geochemistry, vol. 8, New York: Springer, 1992, chapter 4, pp. 98–131.

  26. Bychinskii, V.A., Isaev, V.P., and Tupitsyn, A.A., Fiziko-khimicheskoe modelirovanie v neftegazovoi geokhimii. Ch. 1. Teoriya i metodologiya fiziko-khimicheskogo modelirovaniya: Uch. posobie (Physicochemical Modeling in Oil and Gas Geochemistry. Part I. Theory and Methodology of Physicochemical Modeling: A Learning Guide), Irkutsk: Irkutsk. Univ., 2004.

  27. Fei, Y. and Saxena, S.K., An equation for the heat capacity of solids, Geochim. Cosmochim. Acta, 1987, vol. 51, pp. 251–254.

    Article  CAS  Google Scholar 

  28. Khodakovsky, I.L., New semiempirical equations for the temperature-dependent heat capacity and volume expansivity of minerals, Vestn. Otd. Nauk Zemle Ross. Akad. Nauk, 2012, vol. 4, no. NZ9001. https://doi.org/10.2205/2012NZ_ASEMPG

  29. Termicheskie konstanty veshchestv: Spravochnik (Thermal Constants of Substances: A Handbook), Glushko, V.P., Ed., Moscow: VINITI, 1965–1982. http://www.chem.msu.ru/cgi-bin/tkv.pl

  30. Tyurin, A.V., Izotov, A.D., Gavrichev, K.S., and Zlomanov, V.P., Describing the heat capacity of III–VI compound semiconductors in a fractal model, Inorg. Mater., 2014, vol. 50, no. 9, pp. 903–906. https://doi.org/10.1134/S0020168514090155

    Article  CAS  Google Scholar 

  31. Shebershneva, O.V., Izotov, A.D., Gavrichev, K.S., and Lazarev, V.B., A method for treating low-temperature calorimetry data with regard to the multifractality of atomic vibrations, Inorg. Mater., 1996, vol. 32, no. 1, pp. 28–32.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this research, we used equipment at the Shared Physical Characterization Facilities Center, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation, project no. 17-17-01220.

Part of this work (PtS2 synthesis) was supported by the Russian Federation Government (program no. 211, agreement no. 02.A03.21.0006) and the Russian Federation Ministry of Science and Higher Education (program for improving the competitiveness of Kazan Federal University).

The study of the heat capacity of PtS2 in this work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, basic research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tyurin.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyurin, A.V., Polotnyanko, N.A., Testov, D.S. et al. Thermodynamic Functions of PtS2 in a Wide Temperature Range. Inorg Mater 56, 116–125 (2020). https://doi.org/10.1134/S002016852002017X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852002017X

Keywords:

Navigation