Skip to main content
Log in

Synthesis of Vanadium Diboride Nanoparticles via Reaction of VCl3 with NaBH4

  • Published:
Inorganic Materials Aims and scope

Abstract—

It has been shown using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, and elemental analysis that phase-pure VB2 with an average particle size in the range 20–35 nm can be prepared in the temperature range 595–930°C by reacting vanadium(III) chloride and sodium borohydride in the molar ratio 1 : 10 in an argon atmosphere for 14–28 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Serebryakova, T.I., Neronov, V.A., and Peshev, P.D., Vysokotemperaturnye boridy (High-Temperature Borides), Chelyabinsk: Metallurgiya, 1991.

  2. Carenco, S., Portehault, D., Boissiere, C., Mezailles, N., and Sanchez, C., Nanoscaled metal borides and phosphides: recent developments and perspectives, Chem. Rev., 2013, vol. 113, no. 10, pp. 7981–8065. https://doi.org/10.1021/cr400020d

    Article  CAS  PubMed  Google Scholar 

  3. Trach, Yu.B., Bulgakova, L.V., Macota, O.I., Suprun, W.Ya., Schulze, B., and Stank, C.B.W., Vanadium diboride catalyzed oxidation of cyclooctene by molecular oxygen: kinetic study, J. Mol. Catal. A: Chem., 2009, vol. 302, pp. 124–128. https://doi.org/10.1016/j.molcata.2008.12.008

    Article  CAS  Google Scholar 

  4. Lefler, M., Stuart, J., Parkey, J., and Licht, S., Higher capacity, improved conductive matrix VB2 air batteries, J. Electrochem. Soc., 2016, vol. 163, no. 5, pp. A781–A784. https://doi.org/10.1149/2.0031606jes

    Article  CAS  Google Scholar 

  5. Licht, S., Ghosh, S., Wang, B., Jiang, D., Hettige, C., Lau, J., and Asercion, J., An 11 electron redox couple for anodic charge storage: VB2, ECS Trans., 2011, vol. 35, no. 33, pp. 21–29. https://doi.org/10.1149/1.3655434

    Article  CAS  Google Scholar 

  6. Prokhorov, A.M., Lyakishev, N.P., Burkhanov, G.S., and Dementev, V.A., High-purity transition-metal borides: promising materials for present-day technology, Inorg. Mater., 1996, vol. 32, no. 11, pp. 1195–1201.

    CAS  Google Scholar 

  7. Andrievski, R.A. and Khatchoyan, A.V., Nanomaterials in Extreme Environments: Fundamentals and Applications, Berlin: Springer, 2016. https://doi.org/10.1007/978-3-319-25331-2

    Book  Google Scholar 

  8. Levashov, E.A., Rogachev, A.S., Kurbatkina, V.V., Maksimov, Yu.M., and Yukhvid, V.I., Perspektivnye materialy i tekhnologii samorasprostranyayushchegosya vysokotemperaturnogo sinteza (Self-Propagating High-Temperature Synthesis: Promising Materials and Technologies), Moscow: Izdatel’skii Dom Mosk. Inst. Stali i Splavov, 2011.

  9. Wei, Y., Huang, Zh., Zhou, L., and Ran, S., Novel borothermal synthesis of VB2 powders, Int. J. Mater. Res., 2015, vol. 9, pp. 1–3. https://doi.org/10.3139/146.111286

    Article  Google Scholar 

  10. Peshev, P., Leyarovska, L., and Bliznakov, G., On the borothermic preparation of some vanadium, niobium and tantalum borides, J. Less-Common Met., 1968, vol. 15, pp. 259–267. https://doi.org/10.1016/0022-5088(68)90184-7

    Article  CAS  Google Scholar 

  11. Krutskii, Yu.L., Maksimovskii, E.A., Krutskaya, T.M., Popov, M.V., Netskina, O.V., Nikulina, A.A., Cherkasova, N.Yu., and Kvashina, T.S., Synthesis of highly dispersed vanadium diboride with the use of nanofibrous carbon, Russ. J. Appl. Chem., 2017, vol. 90, no. 9, pp. 1379–1385. https://doi.org/10.1134/S1070427217090014

    Article  CAS  Google Scholar 

  12. Kim, J.W., Shim, J.H., Ahn, J.P., Cho, Y.W., Kim, J.H., and Oh, K.H., Mechanochemical synthesis and characterization of TiB2 and VB2, Mater. Lett., 2008, vol. 62, pp. 2461–2464. https://doi.org/10.1016/j.matlet.2007.12.022

    Article  CAS  Google Scholar 

  13. Yeh, C.L. and Wang, H.J., Combustion synthesis of vanadium borides, J. Alloys Compd., 2011, vol. 509, pp. 3257–3261. https://doi.org/10.1016/j.jallcom.2010.12.004

    Article  CAS  Google Scholar 

  14. Hassanzadeh-Tabrizi, S.A., Davoodi, D., Beykzadeh, A.A., and Salahshour, S., Fast mechanochemical combustion synthesis of nanostructured vanadium boride by a magnesiothermic reaction, Ceram. Int., 2016, vol. 42, pp. 1812–1816. https://doi.org/10.1016/j.ceramint.2015.09.144

    Article  CAS  Google Scholar 

  15. Shi, L., Gu, Y., Chen, L., Yang, Z., Ma, J., and Qian, Y., Low-temperature synthesis of nanocrystalline vanadium diboride, Mater. Lett., 2004, vol. 58, pp. 2890–2892. https://doi.org/10.1016/j.matlet.2004.05.013

    Article  CAS  Google Scholar 

  16. Portehaut, D., Devis, S., Beaunier, P., Gervais, C., Giordano, C., Sanchez, C., and Antonietti, M., A general solution route toward metal boride nanocrystals, Angew. Chem., 2011, vol. 50, pp. 3262–3265. https://doi.org/10.1002/anie.201006810

    Article  CAS  Google Scholar 

  17. Nozdrin, I.V., Galevskii, G.V., Shiryaeva, L.S., and Terent’eva, M.A., Particle size of vanadium and chromium borides and carbides in a plasma flux, Steel Transl., 2011, vol 41, no. 10, pp. 799–804. https://doi.org/10.3103/S0967091211100147

    Article  Google Scholar 

  18. Avvakumov, E.G., Mekhanicheskie metody aktivatsii khimicheskikh protsessov (Mechanical Techniques for the Activation of Chemical Processes), Novosibirsk: Nauka, 1989.

  19. Rao, L., Gillan, E.G., and Kaner, R.B., Rapid synthesis of transition-metal borides by solid-state metathesis, J. Mater. Res., 1995, vol. 10, no. 2, pp. 353–361.

    Article  CAS  Google Scholar 

  20. Jothi, P.R., Kunio Yubuta, and Fokwa, B.P.T., A simple, general synthetic route toward nanoscale transition metal borides, Adv. Mater., 2018, vol. 30, no. 14, paper 1 704 181. https://doi.org/10.1002/adma.201704181

    Article  Google Scholar 

  21. Fokin, V.N., Fokina, E.E., and Shilkin, S.P., Synthesis of coarsely crystalline metal hydrides, Russ. J. Gen. Chem., 1996, vol. 66, no. 8, pp. 1210–1212.

    Google Scholar 

  22. Semenenko, K.N., Shilkin, S.P., Burnasheva, V.V., Volkova, L.S., Govorkova, L.V., and Mozgina, N.G., Reactions of the ScT2 (T = Fe, Co, Ni) intermetallic compounds with nitrogen in the presence of hydrogen, Zh. Obshch. Khim., 1984, vol. 54, no. 3, pp. 491–495.

    CAS  Google Scholar 

  23. Kravchenko, S.E., Burlakova, A.G., Domashnev, I.A., Nadkhina, S.E., Dremova, N.N, Vinokurov, A.A., and Shilkin, S.P., Formation of zirconium diboride nanoparticles as a result of reaction between zirconium tetrachloride and sodium borohydride, Inorg. Mater., 2017, vol. 53, no. 8, pp. 804–808. https://doi.org/10.1134/S002016851708009X

    Article  CAS  Google Scholar 

  24. Dymova, T.N., Eliseeva, N.G., and Mikheeva, V.I., Thermoanalytical study of sodium borohydride and related substances, Zh. Neorg. Khim., 1967, vol. 12, no. 9, pp. 2317–2320.

    CAS  Google Scholar 

  25. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem: Spravochnik (Phase Diagrams of Binary Metallic Systems: A Handbook), Lyakishev, N.P., Ed., Moscow: Mashinostroenie, 1996, vol. 1.

    Google Scholar 

  26. Aleshin, V.G., Kharlamov, A.N., and Chudinov, M.G., Surface condition of refractory compounds studied by X-ray photoelectron spectroscopy, Izv. Akad. Nauk SSSR,Neorg. Mater., 1979, vol. 15, no. 4, pp. 672–676.

    CAS  Google Scholar 

  27. Terlan, B., Levin, A.A., Börrnert, F., Simon, F., Oschatz, M., Schmidt, M., Cardoso-Gil, R., Lorenz, T., Baburin, I.A., Joswig, J.-O., and Eychmüller, A., Effect of surface properties on the microstructure, thermal, and colloidal stability of VB2 nanoparticles, Chem. Mater., 2015, vol. 27, no. 14, pp. 5106–5115. https://doi.org/10.1021/acs.chemmater.5b01856

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Shared Analytical Facilities Center, Institute of Problems of Chemical Physics, Russian Academy of Sciences.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, state research target, theme no. 0089-2019-0007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Shilkin.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobov, I.I., Kovalev, D.Y., Kalinnikov, G.V. et al. Synthesis of Vanadium Diboride Nanoparticles via Reaction of VCl3 with NaBH4. Inorg Mater 56, 126–131 (2020). https://doi.org/10.1134/S0020168520020065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520020065

Keywords:

Navigation