Skip to main content
Log in

Chemical Transformations of Calcium Phosphates during Production of Ceramic Materials on Their Basis

  • Published:
Inorganic Materials Aims and scope

Abstract

Production of ceramic materials based on various calcium phosphates is a multistep process, which includes preparing a substance in a splintered state (powder or suspension), molding a sample or product using one of the available methods, and sintering. A given phase composition, microstructure, and shape of the sample are formed during sintering, which are properties necessary for the intended use of the material. All stages of the production of phosphate-based materials are performed, as a rule, by predetermined chemical reactions. The chemical transformations occurring at different stages of the production of ceramic materials based on calcium phosphates are examined in the present review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Jensen, M.B., Slots, C., Ditzel, N., Albrektsen, O., Borg, S., Thygesen, T., Kassem, M., and Andersen, M.Ø., Composites of fatty acids and ceramic powders are versatile biomaterials for personalized implants and controlled release of pharmaceuticals, Bioprinting, 2018, vol. 10, p. e00027. https://doi.org/10.1016/j.bprint.2018.e00027

    Article  Google Scholar 

  2. Parent, M., Baradari, H., Champion, E., Damia, C., and Viana-Trecant, M., Design of calcium phosphate ceramics for drug delivery applications in bone diseases: A review of the parameters affecting the loading and release of the therapeutic substance, J. Controlled Release, 2017, vol. 252, pp. 1–17. https://doi.org/10.1016/j.jconrel.2017.02.012

    Article  CAS  Google Scholar 

  3. Bose, S. and Tarafder, S., Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review, Acta Biomater., 2012, vol. 8, no. 4, pp. 1401–1421. https://doi.org/10.1016/j.actbio.2011.11.017

    Article  CAS  PubMed  Google Scholar 

  4. Verron, E., Khairoun, I., Guicheux, J., and Bouler, J.M., Calcium phosphate biomaterials as bone drug delivery systems: a review, Drug Discovery Today, 2010, vol. 15, nos. 13–14, pp. 547–552. https://doi.org/10.1016/j.drudis.2010.05.003

    Article  CAS  PubMed  Google Scholar 

  5. Habraken, W., Habibovic, P., Epple, M., and Bohner, M., Calcium phosphates in biomedical applications: materials for the future? Mater. Today, 2016, vol. 19, no. 2, pp. 69–87. https://doi.org/10.1016/j.mattod.2015.10.008

    Article  CAS  Google Scholar 

  6. Clearfield, A., Inorganic Ion Exchange Materials, Boca Raton: CRC Press, 1982. ISBN 0-8493-5930-9https://doi.org/10.1201/9781351073561

    Google Scholar 

  7. Al-Kattan, A., Dufour, P., Dexpert-Ghys, J., and Drouet, C., Preparation and physicochemical characteristics of luminescent apatite-based colloids, J. Phys. Chem. C, 2010, vol. 114, no. 7, pp. 2918–2924. https://doi.org/10.1021/jp910923g

    Article  CAS  Google Scholar 

  8. Roman-Lopez, J., Lozano, I.B., Cruz-Zaragoza, E., Guzman Castañeda, J.I., and Díaz-Góngora, J.A.I., Synthesis of β–Ca2P2O7:Tb3+ to gamma radiation detection by thermoluminescence, Appl. Radiat. Isotopes, 2017, vol. 124, pp. 44–48. https://doi.org/10.1016/j.apradiso.2017.03.004

    Article  CAS  Google Scholar 

  9. Wanjun, T. and Zhang, F., Effect of codoping Ce3+ on the luminescence properties of Sr9Mg1.5(PO4)7:Eu2+ orange–yellow phosphor, J. Am. Ceram. Soc., 2019. https://doi.org/10.1111/jace.16311

    Article  Google Scholar 

  10. Kolaya, S., Basu, M., Sudarsana, V., and Tyagi, A.K., Blue light emitting Eu doped Ca2P2O7 and Ba2P2O7 particles synthesized at low temperatures, Solid State Sci., 2018, vol. 85, pp. 26–31. https://doi.org/10.1016/j.solidstatesciences.2018.09.007

    Article  CAS  Google Scholar 

  11. Ruthner, H. and Noller, H., Stereomechanism of the elimination of CH3COOH from gaseous 2-butylacetate-3-d1 over phosphate catalysts, J. Catal., 1975, vol. 38, nos. 1–3, pp. 264–272. https://doi.org/10.1016/0021-9517(75)90087-1

    Article  CAS  Google Scholar 

  12. Ghantani, V.C., Dongare, M.K., and Umbarkar, S.B., Nonstoichiometric calcium pyrophosphate: a highly efficient and selective catalyst for dehydration of lactic acid to acrylic acid, RSC Adv., 2014, vol. 4, no. 63, pp. 33319–33326. https://doi.org/10.1039/c4ra06429a

    Article  CAS  Google Scholar 

  13. Kibardin, S.A., The chromatography of biopolymers on calcium phosphate gels, Russ. Chem. Rev., 1965, vol. 34, no. 8, pp. 629–637. https://doi.org/10.1070/RC1965v034n08ABEH001526

    Article  Google Scholar 

  14. Danil’chenko, S.N., Structure and properties of calcium apatites in terms of biomineralogy and biomaterial studies (a review), Visn. Sums’k. Derzh. Univ., Ser. Fiz., Matem., Mekh., 2007, no. 2, pp. 33–59. https://essuir.sumdu.edu.ua/handle/123456789/1152.

  15. Gerk, S.A. and Golovanova, O.A., The elemental composition of normal and pathological human bone tissue, Vestn. Omsk. Univ., 2015, no. 4 (78), pp. 39–44. https://cyberleninka.ru/article/n/elementnyy-sostav-kostnoy-tkani-cheloveka-v-norme-i-pri-patologii

  16. Vallet-Regi M. and Salinas, A.J., 6-Ceramics as bone repair materials, in Bone Repair Biomaterials, Amsterdam: Elsevier, 2019, pp. 141–178. https://doi.org/10.1016/B978-0-08-102451-5.00006-8

    Google Scholar 

  17. Hudon, P. and Jung, I.-H., Critical evaluation and thermodynamic optimization of the CaO–P2O5 system, Metall. Mater. Trans. B, 2015, vol. 46, no. 1, pp. 494–522. https://doi.org/10.1007/s11663-014-0193-x

    Article  CAS  Google Scholar 

  18. Serena, S., Carbajal, L., Sainz, M.A., and Caballero, A., Thermodynamic assessment of the system CaO–P2O5: application of the ionic two-sublattice model to glass-forming melts, J. Am. Ceram. Soc., 2011, vol. 94, no. 9, pp. 3094–3103. https://doi.org/10.1111/j.1551-2916.2011.04445.x

    Article  CAS  Google Scholar 

  19. Martin, R.I. and Brown, P.W., Phase equilibria among acid calcium phosphates, J. Am. Ceram. Soc., 1997, vol. 80, pp. 1263–1266. https://doi.org/10.1111/j.1151-2916.1997.tb02973.x

    Article  CAS  Google Scholar 

  20. Aldabergenov, M.K. and Balakaeva, G.T., Triangulation of the CaO–P2O5–H2O system: an analysis of the phase diagram, Russ. J. Phys. Chem., 1998, vol. 72, no. 9, pp. 1387–1390.

    Google Scholar 

  21. Feng, S.-S. and Rockett, T.J., The system CaO–P2O5–H2O at 200°C, J. Am. Ceram. Soc., 1979, vol. 62, nos. 11–12, pp. 619–620. https://doi.org/10.1111/j.1151-2916.1979.tb12745.x

    Article  CAS  Google Scholar 

  22. Skinner, H.C.W., Studies in the basic mineralizing system, CaO–P2O5–H2O, Calcif. Tissue Res., 1974, vol. 14, no. 1, pp. 3–14. https://doi.org/10.1007/BF02060279

    Article  CAS  PubMed  Google Scholar 

  23. Bassett, H., LVI.—The phosphates of calcium. Part IV. The basic phosphates, Chem. Soc. Trans. J., 1917, vol. 111, pp. 620–642. https://doi.org/10.1039/CT9171100620

    Article  Google Scholar 

  24. Ding, G.-H., Xie, W., Jung, I.-H., Qiao, Z.-Y., Du, G.-W., and Cao, Z.-M., Thermodynamic assessment of the MgO–P2O5 and CaO–P2O5 systems, Acta Phys.-Chim. Sin., 2015, vol. 31, no. 10, pp. 1853–1863. https://doi.org/10.3866/PKU.WHXB201508121

    Article  CAS  Google Scholar 

  25. ACerS-NIST Phase Equilibria Diagrams Database, Version 3.1.0, Westerville, Oh: Am. Ceram. Soc., 2006. https://www.nist.gov/

  26. Brown, P.W., Phase relationships in the ternary system CaO–P2O5–H2O at 25°C, J. Am. Ceram. Soc., 1992, vol. 75, no. 1, pp. 17–22.

    Article  CAS  Google Scholar 

  27. Grover, L.M., Gbureck, U., Wright, A.J., and Barralet, J.E., Cement formulations in the calcium phosphate H2O–H3PO4–H4P2O7 system, J. Am. Ceram. Soc., 2005, vol. 88, no. 11, pp. 3096–3103. https://doi.org/10.1111/j.1551-2916.2005.00558.x

    Article  CAS  Google Scholar 

  28. Safronova, T.V., Putlyaev, V.I., Kurbatova, S.A., Shatalova, T.B., Larionov, D.S., Kozlov, D.A., and Evdokimov, P.V., Properties of amorphous calcium pyrophosphate powder synthesized via ion exchange for the preparation of bioceramics, Inorg. Mater., 2015, vol. 51, no. 11, pp. 1177–1184. https://doi.org/10.1134/S0020168515110096

    Article  CAS  Google Scholar 

  29. Safronova, T.V., Kurbatova, S.A., Shatalova, T.B., Knotko, A.V., Yevdokimov, P.V., and Putlyayev, V.I., Calcium pyrophosphate powder for production of bioceramics synthesized from pyrophosphoric acid and calcium acetate, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 1, pp. 118–125. https://doi.org/10.1134/S2075113317010348

    Article  Google Scholar 

  30. García Rodenas, L., Palacios, J.M., Apella, M.C., Morando, P.J., and Blesa, M.A., Surface properties of various powdered hydroxyapatites, J. Colloid Interface Sci., 2005, vol. 290, no. 1, pp. 145–154. https://doi.org/10.1016/j.jcis.2005.04.041

    Article  CAS  PubMed  Google Scholar 

  31. Greish, Y.E. and Brown, P.W., Phase evolution during the formation of stoichiometric hydroxyapatite at 37.4°C, J. Biomed. Mater. Res.,Part B, 2003, vol. 67, no. 1, pp. 632–637. https://doi.org/10.1002/jbm.b.10056

    Article  CAS  Google Scholar 

  32. Pan, H.B. and Darvell, B.W., Solubility of hydroxyapatite by solid titration at pH 3–4, Arch. Oral Biol., 2007, vol. 52, no. 7, pp. 618–624.

    Article  CAS  Google Scholar 

  33. Sadat-Shojai, M., Khorasani, M.T., Dinpanah-Khoshdargi, E., and Jamshidi, A., Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomater., 2013, vol. 9, no. 8, pp. 7591–7621. https://doi.org/10.1016/j.actbio.2013.04.012

    Article  CAS  PubMed  Google Scholar 

  34. Elliott, J.C., Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Amsterdam: Elsevier, 1994, vol. 18. ISBN 978-0-444-81582-8

    Google Scholar 

  35. Cottrell, T.L., The Strengths of Chemical Bonds, London: Butterworth, 1958, 2nd ed.

    Google Scholar 

  36. Darwent de, B.B., Bond Dissociation Energies in Simple Molecules, National Standard Reference Data Series no. 31, Washington: Natl. Bureau Stand., 1970. https://doi.org/10.6028/NBS.NSRDS.31

  37. Benson, S.W., III–Bond energies, J. Chem. Educ., 1965, vol. 42, no. 9, pp. 502–518. https://doi.org/10.1021/ed042p502

    Article  CAS  Google Scholar 

  38. Kerr, J.A., Bond dissociation energies by kinetic methods, Chem. Rev., 1966, vol. 66, no. 5, pp. 465–500.

    Article  CAS  Google Scholar 

  39. Johnson, D.A., Some Thermodynamic Aspects of Inorganic Chemistry, Cambridge: Cambridge Univ. Press, 1982. ISBN 978-0-521-07108-6

    Google Scholar 

  40. Pearson, R.G., Hard and soft acids and bases, Surv. Prog. Chem., 1969, vol. 5, no. 1, pp. 1–52. https://doi.org/10.1016/B978-0-12-395706-1.50007-8

    Article  CAS  Google Scholar 

  41. Pearson, R.G., Hard and soft acids and bases, Usp. Khim., 1971, vol. 40, no. 7, pp. 1259–1282. https://doi.org/10.1070/RC1971v040n07ABEH003854

    Article  Google Scholar 

  42. Safronova, T.V., Phase composition of ceramic based on calcium hydroxyapatite powders containing byproducts of the synthesis reaction, Glass Ceram., 2009, vol. 66, nos. 3–4, pp. 136–139. https://doi.org/10.1007/s10717-009-9130-x

    Article  CAS  Google Scholar 

  43. Safronova, T.V. and Putlyaev, V.I., Powder systems for calcium phosphate ceramics, Inorg. Mater., 2017, vol. 53, no. 1, pp. 17–26. https://doi.org/10.1134/S0020168516130057

    Article  CAS  Google Scholar 

  44. Riman, R.E., Suchanek, W.L., Byrappa, K., Chen, C.W., Shuk, P., and Oakes, C.S., Solution synthesis of hydroxyapatite designer particulates, Solid State Ionics, 2002, vol. 151, nos. 1–4, pp. 393–402. https://doi.org/10.1016/S0167-2738(02)00545-3

    Article  CAS  Google Scholar 

  45. Suchanek, K., Bartkowiak, A., Perzanowski, M., and Marszałek, M., From monetite plate to hydroxyapatite nanofibers by monoethanolamine assisted hydrothermal approach, Sci. Rep., 2018, vol. 8, no. 1, p. 15408. https://www.nature.com/articles/s41598-018-33936-4.pdf.

    Article  Google Scholar 

  46. Ouerfelli, N. and Zid, M.F., New polymorph of CaHPO4 (monetite): synthesis and crystal structure, J. Struct. Chem., 2016, vol. 57, no. 3, pp. 628–631. https://doi.org/10.1134/S0022476616030252

    Article  CAS  Google Scholar 

  47. Chaikina, M.V., Bulina, N.V., Ishchenko, A.V., and Prosanov, I.Yu., Mechanochemical synthesis of hydroxyapatite and its modifications: composition, structure, and properties, Russ. Phys. J., 2014, vol. 56, no. 10, pp. 1176–1182. https://doi.org/10.1007/s11182-014-0159-0

    Article  CAS  Google Scholar 

  48. Poinern, G.E.J., Brundavanam, R.K., Le, X.T., Nicholls, P.K., Cake, M.A., and Fawcett, D., The synthesis, characterization, and in vivo study of a bioceramic for potential tissue regeneration applications, Sci. Rep., 2014, vol. 4, no. 6235, pp. 1–9. https://www.nature.com/articles/srep06235.pdf

    Google Scholar 

  49. Uskokovic, V., Entering the era of nanoscience: time to be so small, J. Biomed. Nanotechnol., 2013, vol. 9, no. 9, pp. 1441–1470. https://doi.org/10.1166/jbn.2013.1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brown, W.E., Smith, J.P., Lehr, J.R., and Frazier, A.W., Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite, Nature, 1962, vol. 196, no. 4859, pp. 1050–1055. https://www.nature.com/articles/1961050a0.

    Article  CAS  Google Scholar 

  51. Lehr, J.R., Engelstad, O.P., and Brown, E.H., Evaluation of calcium ammonium and calcium potassium pyrophosphates as fertilizers, Soil Sci. Soc. Am. J., 1964, vol. 28, no. 3, pp. 396–400. https://doi.org/10.2136/sssaj1964.03615995002800030028x

    Article  CAS  Google Scholar 

  52. Watters, J.I. and Lambert, S.M., The complexes of calcium ion with pyrophosphate and triphosphate ions, J. Am. Chem. Soc., 1959, vol. 81, no. 13, pp. 3201–3203. https://doi.org/10.1021/ja01522a009

    Article  CAS  Google Scholar 

  53. Wazer, J.V.R., Phosphorus and Its Compounds, New York: Wiley, 1958, vol. 1.

    Google Scholar 

  54. Voskresenskaya, N.K. and Sokolova, I.D., Condensed phosphates in the molten state, Russ. Chem. Rev., 1969, vol. 38, no. 10, pp. 862–872.

    Article  Google Scholar 

  55. Tret’yakov, Yu.D. and Putlyaev, V.I., Vvedenie v khimiyu tverdofaznykhmaterialov: uchebnoe posobie (Introduction into Chemistry of Solid Materials: Manual), Moscow: Nauka, 2006. ISBN 5-02-034137-1

  56. Rusakov, A.A., Rentgenografiya metallov (X-Ray Analysis of Metals), Moscow: Atomizdat, 1977.

  57. Rentgenografiya. Spetsial’nyi praktikum (X-Ray Analysis: Special Practical Manual), Katsnel’son, A.A., Ed., Moscow: Mosk. Gos. Univ., 1986.

  58. Neorganicheskaya khimiya (Inorganic Chemistry), Tret’yakov, Yu.D., Ed., Moscow: Akademiya, 2004, vol. 1. ISBN 5-7695-2532-0

  59. Khimicheskaya tekhnologiya keramiki: Uchebnoe posobie (Chemical Technology of Ceramics: Manual for Higher Education Institutions), Guzman, I.Ya., Ed., Moscow: Stroimaterialy, 2011. ISBN 978-5-94026-019-6

    Google Scholar 

  60. Wakai, F., Guillon, O., Okuma, G., and Nishiyama, N., Sintering forces acting among particles during sintering by grain-boundary/surface diffusion, J. Am. Ceram. Soc., 2019, vol. 102, no. 2, pp. 538–547. https://doi.org/10.1111/jace.15716

    Article  CAS  Google Scholar 

  61. Onuma, K. and Ito, A., Cluster growth model for hydroxyapatite, Chem. Mater., 1998, vol. 10, no. 11, pp. 3346–3351. https://doi.org/10.1021/cm980062c

    Article  CAS  Google Scholar 

  62. Monma, H., Nishimura, Y., and Okura, T., Characterization of layer-structured octacalcium phosphate/dicarboxylate composite, Phosphorus Res. Bull., 2005, vol. 18, pp. 127–134. https://www.jstage.jst.go.jp/article/ prb1992/18/0/18_127/_pdf.

    Article  CAS  Google Scholar 

  63. Yin, X. and Scott, M.J., Biological calcium phosphates and Posner’s cluster, J. Chem. Phys., 2003, vol. 118, no. 8, pp. 3717–3723. https://doi.org/10.1063/1.1539093

    Article  CAS  Google Scholar 

  64. Abbona, F. and Baronet, A., A XRD and TEM study on the transformation of amorphous calcium phosphate in the presence of magnesium, J. Cryst. Growth, 1996, vol. 165, pp. 98–105. https://doi.org/10.1016/0022-0248(96)00156-X

    Article  CAS  Google Scholar 

  65. Christoffersen, J., Christoffersen, M.R., Kibalczyc, W., and Andersen, F.A., A contribution to the understanding of the formation of calcium phosphates, J. Cryst. Growth, 1989, vol. 94, no. 3, pp. 767–777. https://doi.org/10.1016/0022-0248(89)90102-4

    Article  CAS  Google Scholar 

  66. Christoffersen, M.R., Christoffersen, J., and Kibalczyc, W., Apparent solubilities of two amorphous calcium phosphates in the temperature range 30–42°C, J. Cryst. Growth, 1990, vol. 106, pp. 349–354. https://doi.org/10.1016/0022-0248(90)90079-Z

    Article  CAS  Google Scholar 

  67. Kibalczyc W., Christoffersen, J., Christoffersen, M.R., Zielenkiewicz, A., and Zielenkiewicz, W., The effect of magnesium ions on the precipitation of calcium phosphates, J. Cryst. Growth, 1990, vol. 106, pp. 355–366. https://doi.org/10.1016/0022-0248(90)90080-5

    Article  CAS  Google Scholar 

  68. Ito, A., Kanzaki, N., Onuma, K., Treboux, G., and Tsutsumi, S., Inhibitory effect of magnesium and zinc on crystallization kinetics of hydroxyapatite (0001) face, J. Phys. Chem. B, 2000, vol. 104, pp. 4189–4194. https://doi.org/10.1021/jp9939726

    Article  CAS  Google Scholar 

  69. Tadic, D., Peters, F., and Epple, M., Continuous synthesis of amorphous carbonated apatites, Biomaterilas, 2002, vol. 23, pp. 2553–2559. https://doi.org/10.1016/S0142-9612(01)00390-8

    Article  CAS  Google Scholar 

  70. Tadic, D., Veresov, A., Putlayev, V., and Epple, M., In-vitro preparation of nanocrystalline calcium phosphates as bone substitution materials in surgery, Mater. Sci. Eng. Technol., 2003, vol. 34, no. 12, pp. 1048–1051. https://doi.org/10.1002/mawe.200300702

    Article  CAS  Google Scholar 

  71. Dorozhkin, S.V. and Epple, M., Biological and medical significance of calcium phosphates, Angew. Chem., Int. Ed., 2002, vol. 41, pp. 3130–3146. https://doi.org/10.1002/1521-3773(20020902)41:17<3130:: AID-ANIE3130>3.0.CO;2-1

    Article  CAS  Google Scholar 

  72. Kanazawa, T., Inorganic Phosphate Materials, Amsterdam: Elsevier, 1989.

    Google Scholar 

  73. LeGeros, R.Z., Properties of osteoconductive biomaterials: calcium phosphates, Clin. Orthop. Relat. Res., 2002, vol. 395, pp. 81–98. https://journals.lww.com/clinorthop/Fulltext/2002/02000/Properties_of_Osteoconductive_Biomaterials_.9.aspx.

    Article  Google Scholar 

  74. Safronova, T.V., Putlayev, V.I., Bessonov, K.A., and Ivanov, V.K., Ceramics based on calcium pyrophosphate nanopowders, Process. Appl. Ceram., 2013, vol. 7, no. 1, pp. 9–14. https://doi.org/10.2298/PAC1301009S

    Article  CAS  Google Scholar 

  75. Combes, C. and Rey, C., Amorphous calcium phosphates: synthesis, properties and uses in biomaterials, Acta Biomater., 2010, vol. 6, no. 9, pp. 3362–3378. https://doi.org/10.1016/j.actbio.2010.02.017

    Article  CAS  PubMed  Google Scholar 

  76. Safronova, T.V., Knot’ko, A.V., Shatalova, T.B., Evdokimov, P.V., Putlyaev, V.I., and Kostin, M.S., Calcium phosphate ceramic based on powder synthesized from a mixed-anionic solution, Glass Ceram., 2016, vol. 73, nos. 1–2, pp. 25–31. https://doi.org/10.1007/s10717-016-9819-6

    Article  CAS  Google Scholar 

  77. Safronova, T.V. and Putlyaev, V.I., Medical inorganic materials science in Russia: calcium phosphate materials, Nanosist.: Fiz., Khim., Matem., 2013, vol. 4, no. 1, pp. 24–47. https://cyberleninka.ru/article/n/meditsinskoe-neorganicheskoe-materialovedenie-v-rossii-kaltsiyfosfatnye-materialy.

  78. Barinov, S.M., Calcium phosphate-based ceramic and composite materials for medicine, Russ. Chem. Rev., 2010, vol. 79, no. 1, pp. 13–29. https://doi.org/10.1070/RC2010v079n01ABEH004098

    Article  CAS  Google Scholar 

  79. Stähli, C., Thüring, J., Galea, L., Tadier, S., Bohner, M., and Döbelin, N., Hydrogen-substituted β-tricalcium phosphate synthesized in organic media, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2016, vol. 72, no. 6, pp. 875–884. https://doi.org/10.1107/S2052520616015675

    Article  CAS  Google Scholar 

  80. Layrolle, P. and Lebugle, A., Characterization and reactivity of nanosized calcium phosphate prepared in anhydrous ethanol, Chem. Mater., 1994, vol. 6, no. 11.https://doi.org/10.1021/cm00047a019

    Article  CAS  Google Scholar 

  81. Bolarinwa, A. Gbureck, U., Purnell, P., Bold, M., and Grover, L.M., Cement casting of calcium pyrophosphate based bioceramics, Adv. Appl. Ceram., 2010, vol. 109, no. 5, pp. 291–295. https://doi.org/10.1179/174367609X459586

    Article  CAS  Google Scholar 

  82. Dai, X. and Shivkumar, S., Electrospinning of PVA-calcium phosphate sol precursors for the production of fibrous hydroxyapatite, J. Am. Ceram. Soc., 2007, vol. 90, no. 5, pp. 1412–1419. https://doi.org/10.1111/j.1551-2916.2007.01569.x

    Article  CAS  Google Scholar 

  83. Safronova, T.V., Secheiko, P.A., and Putlyaev, V.I., Multiphase ceramics based on powders synthesized from sodium pyrophosphate and soluble calcium salts using mechanical activation, Glass Ceram., 2012, vol. 69, no. 7, pp. 276–282. https://doi.org/10.1007/s10717-012-9462-9

    Article  CAS  Google Scholar 

  84. Safronova, T.V., Reshotka, D.S., Putlyaev, V.I., Lukin, E.S., and Ivanov, V.K., Phase composition of powdered material based on calcium hydroxyapatite and sodium dihydrophosphate, Glass Ceram., 2009, vol. 66, nos. 7–8, pp. 293–296. https://doi.org/10.1007/s10717-009-9186-7

    Article  CAS  Google Scholar 

  85. Safronova, T.V., Putlyaev, V.I., Filippov, Ya.Yu., Shatalova, T.B., Naberezhnyi, D.O., Nasriddinov, A.F., and Larionov, D.S., Ceramics based on powder mixtures containing calcium hydrogen phosphates and sodium salts (Na2CO3, Na4P2O7, and NaPO3), Inorg. Mater., 2018, vol. 54, no. 7, pp. 724–735. https://doi.org/10.1134/S0020168518070166

    Article  CAS  Google Scholar 

  86. Safronova, T., Putlayev, V., Filippov, Ya., Shatalova, T., Karpushkin, E., Larionov, D., Kazakova, G., and Shakhtarin, Yu., Calcium phosphate powder synthesized from calcium acetate and ammonium hydrophosphate for bioceramics application, Ceramics, 2018, vol. 1, no. 2, pp. 375–392. https://doi.org/10.3390/ceramics1020030

    Article  Google Scholar 

  87. Safronova, T.V., Kuznetsov, A.V., Korneychuk, S.A., Putlyaev, V.I., and Shekhirev, M.A., Calcium phosphate powders synthesized from solutions with [Ca2+]/[PO43−]=1 for bioresorbable ceramics, Central Eur. J. Chem., 2009, vol. 7, no. 2, pp. 184–191. https://doi.org/10.2478/s11532-009-0016-0

    Article  CAS  Google Scholar 

  88. Safronova, T.V., Shekhirev, M.A., Putlyaev, V.I., and Tret’yakov, Yu.D., Hydroxyapatite-based ceramic materials prepared using solutions of different concentrations, Inorg. Mater., 2007, vol. 43, no. 8, pp. 901–909. https://doi.org/10.1134/S0020168507080158

    Article  CAS  Google Scholar 

  89. Champion, E. Sintering of calcium phosphate bioceramics, Acta Biomater., 2013, vol. 9, no. 4, pp. 5855–5875. https://doi.org/10.1016/j.actbio.2012.11.029

    Article  CAS  PubMed  Google Scholar 

  90. Le Geros, R.Z., Calcium phosphate materials in restorative dentistry: a review, Adv. Dental Res., 1988, vol. 2, no. 1, pp. 164–180. https://doi.org/10.1177/08959374880020011101

    Article  CAS  Google Scholar 

  91. Bandyopadhyay, A., Bernard, Sh., Xue, W., and Bose, S., Calcium phosphate-based resorbable ceramics: influence of MgO, ZnO, and SiO2 dopants, J. Am. Ceram. Soc., 2006, vol. 89, no. 9, pp. 2675–2688. https://doi.org/10.1111/j.1551-2916.2006.01207.x

    Article  CAS  Google Scholar 

  92. Safronova, T.V., Putlyaev, V.I., Knot’ko, A.V., Krut’ko, V.K., Musskaya, O.N., Ulasevich, S.A., Vorob’eva, N.A., and Telitsin, V.D., Calcium phosphate ceramic in the system Ca(PO3)2–Ca2P2O7 based on powder mixtures containing calcium hydrophosphate, Glass Ceram., 2018, vol. 75, nos. 7–8, pp. 279–286. https://doi.org/10.1007/s10717-018-0072-z

    Article  CAS  Google Scholar 

  93. Safronova, T.V., Mukhin, E.A., Putlyaev, V.I., Knotko, A.V., Evdokimov, P.V., Shatalova, T.B., Filippov, Ya.Yu., Sidorov, A.V., and Karpushkin, E.A., Amorphous calcium phosphate powder synthesized from calcium acetate and polyphosphoric acid for bioceramics application, Ceram. Int., 2017, vol. 43, pp. 1310–1317. https://doi.org/10.1016/j.ceramint.2016.10.085

    Article  CAS  Google Scholar 

  94. Barlow, J.W., Lee, G., Crawford, R.H., Beaman, J.J., Marcus, H.L., and Lagow, R.J., US Patent 6 183 515, 2001.

  95. Chen, L., Song, W., Mark, D.C., Shi, T., Muzik, O., Matthew, H., and Ren, W., Flow perfusion culture of MC3T3-E1 osteogenic cells on gradient calcium polyphosphate scaffolds with different pore sizes, J. Biomater. Appl., 2016, vol. 30, no. 7, pp. 908–918. https://doi.org/10.1177/0885328215608335

    Article  CAS  PubMed  Google Scholar 

  96. Wanga, Q., Wang, Q., Wang, J., Zhang, X., Yu, X., and Wan, C., Degradation kinetics of calcium polyphosphate bioceramic: an experimental and theoretical study, Mater. Res., 2009, vol. 12, no. 4, pp. 495–501. https://doi.org/10.1590/S1516-14392009000400020

    Article  Google Scholar 

  97. Putlyaev, V.I., Kukueva, E.V., Safronova, T.V., Ivanov, V.K., and Churagulov, B.R., Features of octacalcium phosphate thermolysis, Refract. Ind. Ceram., 2014, vol. 54, no. 5, pp. 420–424. https://doi.org/10.1007/s11148-014-9624-0

    Article  CAS  Google Scholar 

  98. Gbureck, U., Hölzel, T., Biermann, I., Barralet, J.E., and Grover, L.M., Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping, J. Mater. Sci.: Mater. Med., 2008, vol. 19, no. 4, pp. 1559–1563. https://doi.org/10.1007/s10856-008-3373-x

    Article  CAS  Google Scholar 

  99. Chen, G., Li, W., Zhao, B., and Sun, K., A novel biphasic bone scaffold: β-calcium phosphate and amorphous calcium polyphosphate, J. Am. Ceram. Soc., 2009, vol. 92, no. 4, pp. 945–948. https://doi.org/10.1111/j.1551-2916.2009.02971.x

    Article  CAS  Google Scholar 

  100. Sych, E.E., Pinchuk, N.D., Tovstonog, A.B., Golovkova, M.E., Kotlyarchuk, A.V., Evich, Ya.I., Skorokhod, V.V., and Savkova, I.I., The structure and properties of calcium phosphate ceramics produced from monetite and biogenic hydroxyapatite, Powder Metall. Met. Ceram., 2014, vol. 53, no. 7, pp. 423–430. https://doi.org/10.1007/s11106-014-9634-y

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 18-29-11079, 18-53-00034, 18-29-11070, and 18-08-01473).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Putlyaev.

Additional information

Translated by D. Kharitonov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putlyaev, V.I., Safronova, T.V. Chemical Transformations of Calcium Phosphates during Production of Ceramic Materials on Their Basis. Inorg Mater 55, 1328–1341 (2019). https://doi.org/10.1134/S0020168519130028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519130028

Keywords:

Navigation