Skip to main content
Log in

Effects of Support Structure and Composition on the Activity of Cu–Ni Catalysts for Methanol Steam Reforming

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied the catalytic activity of Cu–Ni bimetallic catalysts on yttrium-, tin-, zinc-, and niobium-doped zirconia and ceria supports for methanol steam reforming (MSR), a process for hydrogen production, and examined the effect of the nature of the dopants and annealing temperature on the structure and particle size of the oxide supports and the catalytic activity of the metal oxide composites. In all cases, the addition of heterovalent ions improved the catalytic activity of the materials for the MSR process in comparison with undoped zirconia. The highest hydrogen yield was reached in the case of catalysts doped with niobium and yttrium oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Yaroslavtsev, A.B., Stenina, I.A., Kulova, T.L., Skundin, A.M., and Desyatov, A.V., Nanomaterials for electrical energy storage, Comprehensive Nanoscience and Nanotechnology, Andrews, D.L. et al., Eds., Amsterdam: Academic, 2019, 2nd ed., pp. 165–206.

    Google Scholar 

  2. Shafiei, E., Davidsdottir, B., Leaver, J., Stefansson, H., and Asgeirsson, E.I., Energy, economic, and mitigation cost implications of transition toward a carbon-neutral transport sector: a simulation-based comparison between hydrogen and electricity, J. Clean Prod., 2017, vol. 141, pp. 237–247.

    Article  CAS  Google Scholar 

  3. Moliner, R., Lazaro, M.J., and Suelves, I., Analysis of the strategies for bridging the gap towards the hydrogen economy, Int. J. Hydrogen Energy, 2016, vol. 41, pp. 19 500–19 508.

    Article  CAS  Google Scholar 

  4. Abe, J.O., Popoola, A.P.I., Ajenifuja, E., and Popoola, O.M., Hydrogen energy, economy and storage: review and recommendation, Int. J. Hydrogen Energy, 2019, vol. 44, pp. 15 072–15 086.

    Article  CAS  Google Scholar 

  5. Naruki, E., Shimoda, E., Goshome, K., Yamane, T., Nozu, T., and Maeda, T., Construction and operation of hydrogen energy utilization system for a zero emission building, Int. J. Hydrogen Energy, 2019, vol. 44, pp. 14 596–14 604.

  6. Miranda, P.E., Hydrogen energy, Sustainable and Perennial Science and Engineering of Hydrogen-Based Energy Technologies, Miranda, P.E., Ed., Amsterdam: Academic, 2019, chapter 1, pp. 1–38.

    Google Scholar 

  7. Frusteri, F. and Bonura, G., Hydrogen production by reforming of bio-alcohols, Compendium of Hydrogen Energy. Hydrogen Production and Purification, Subramani, V. et al., Eds., Woodhead Publishing Series in Energy, 2015.

    Google Scholar 

  8. Ghasemzadeh, K., Jalilnejad, E., Mohamad, S., and Tilebon, S., Hydrogen production technologies from ethanol, Ethanol, Basile, A. et al., Eds., Amsterdam: Elsevier, 2019, chapter 12, pp. 307–340.

    Google Scholar 

  9. López-Tenllado, F.J., Hidalgo-Carrillo, J., Montes-Jiménez, V., Sánchez-López, E., Urbano, F.J., and Marinas, A., Photocatalytic production of hydrogen from binary mixtures of C-3 alcohols on Pt/TiO2: influence of alcohol structure, Catal. Today, 2019, vol. 328, pp. 2–7.

    Article  Google Scholar 

  10. Li, Sh., Zheng, H., Zheng, Y., Tian, J., Jing, T., Chang, Jo-Sh., and Ho, Sh.H., Recent advances in hydrogen production by thermo-catalytic conversion of biomass, Int. J. Hydrogen Energy, 2019, vol. 44, pp. 14 266–14 278.

    Article  CAS  Google Scholar 

  11. Chiu, Y.J., Chiu, H.C., Hsieh, R.H., Jang, J.H., and Jiang, B.Y., Simulations of hydrogen production by methanol steam reforming, Energy Proc., 2019, vol. 156, pp. 38–42.

    Article  CAS  Google Scholar 

  12. Lytkina, A.A., Orekhova, N.V., and Yaroslavtsev, A.B., Catalysts for the steam reforming and electrochemical oxidation of methanol, Inorg. Mater., 2018, vol. 54, no. 13, pp. 1315–1329.

    Article  CAS  Google Scholar 

  13. Kim, D.H., Kim, J.H., Jang, Y.S., and Kim, J.C., Hydrogen production by oxidative steam reforming of methanol over anodic aluminum oxide-supported Cu–Zn catalyst, Int. J. Hydrogen Energy, 2019, vol. 44, pp. 9873–9882.

    Article  CAS  Google Scholar 

  14. Tahay, P., Khani, Y., Jabari, M., Bahadoran, F., and Safari, N., Highly porous monolith/TiO2 supported Cu, Cu–Ni, Ru, and Pt catalysts in methanol steam reforming process for H2 generation, Appl. Catal., A, 2018, vol. 554, pp. 44–53.

    Article  CAS  Google Scholar 

  15. Khzouz, M., Gkanas, E.I., Du, S., and Wood, J., Catalytic performance of Ni–Cu/Al2O3 for effective syngas production by methanol steam reforming, Fuel, 2018, vol. 232, pp. 672–683.

    Article  CAS  Google Scholar 

  16. Kuo, M.T., Chen, Y.Y., Hung, W.Y., Lin, S.F., Lin, H.P., Hsu, C.H., Shih, H.Y., Xie, W.A., and Li, S.N., Synthesis of mesoporous CuFe/silicates catalyst for methanol steam reforming, Int. J. Hydrogen Energy, 2019, vol. 44, pp. 14 416–14 423.

    Article  CAS  Google Scholar 

  17. Sa, S., Silva, H., Brandao, L., Sousa, J.M., and Mendes, A., Catalysts for methanol steam reforming—a review, Appl. Catal., B, 2010, vol. 99, pp. 43–57.

    Article  CAS  Google Scholar 

  18. Azenha, C.S.R., Mateos-Pedrero, C., Queirós, S., Concepción, P., and Mendes, A., Innovative ZrO2-supported CuPd catalysts for the selective production of hydrogen from methanol steam reforming, Appl. Catal., B, 2017, vol. 203, pp. 400–404.

    Article  CAS  Google Scholar 

  19. Sarafraz, M.M., Safaei, M.R., Goodarzi, M., and Ajomandi, M., Reforming of methanol with steam in a micro-reactor with Cu–SiO2 porous catalyst, Int. J. Hydrogen Energy, 2019 (in press). https://doi.org/10.1016/j.ijhydene.2019.05.215

    Article  CAS  Google Scholar 

  20. Hwang, B.Y., Sakthinathan, S., and Chiu, T.W., Production of hydrogen from steam reforming of methanol carried out by self-combusted CuCr1 –xFexO2 (x = 0–1) nanopowders catalyst, Int. J. Hydrogen Energy, 2019, vol. 44, pp. 2848–2856.

    Article  CAS  Google Scholar 

  21. Thyssen, V.V., Sartore, D.M., and Assaf, E.M., Effect of preparation method on the performance of Ni/MgOSiO2 catalysts for glycerol steam reforming, J. Energy Inst., 2019, vol. 92, pp. 947–958.

    Article  CAS  Google Scholar 

  22. Liu, X., Men, Y., Wang, J., He, R., and Wang, Y., Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming, J. Power Sources, 2017, vol. 364, pp. 341–350.

    Article  CAS  Google Scholar 

  23. Wang, S., Niu, H., Guo, M., Wang, J., Chen, T., and Wang, G., Effect of zirconia polymorph on the synthesis of diphenyl carbonate over supported lead catalysts, Mol. Catal., 2019, vol. 468, pp. 117–124.

    Article  CAS  Google Scholar 

  24. Lytkina, A.A., Zhilyaeva, N.A., Ermilova, M.M., Orekhova, N.V., and Yaroslavtsev, A.B., Influence of the support structure and composition of Ni–Cu-based catalysts on hydrogen production by methanol steam reforming, Int. J. Hydrogen Energy, 2015, vol. 40, pp. 9677–9684.

    Article  CAS  Google Scholar 

  25. Liu, X., Toyir, J., Piscina, P.R., and Homs, N., Hydrogen production from methanol steam reforming over Al2O3- and ZrO2-modified CuOZnOGa2O3 catalysts, Int. J. Hydrogen Energy, 2017, vol. 42, pp. 13 704–13 711.

  26. Guangwei, X., Laitao, L., Changquan, L., and Xiaomao, Y., Synthesis of mesoporous ZnO (m-ZnO) and catalytic performance of the Pd/m-ZnO catalyst for methanol steam reforming, Energy Fuels, 2009, vol. 23, pp. 1342–1346.

    Article  Google Scholar 

  27. Sanches, S.G., Huertas Flores, J., and Pais da Silva, M.I., Cu/ZnO and Cu/ZnO/ZrO2 catalysts used for methanol steam reforming, Mol. Catal., 2018, vol. 454, pp. 55–62.

    Article  CAS  Google Scholar 

  28. Stenina, I.A., Voropaeva, E.Yu., Brueva, T.R., Sinel’nikov, A.A., Drozdova, N.A., Ievlev, V.M., and Yaroslavtsev, A.B., Heat-treatment induced evolution of the morphology and microstructure of zirconia prepared from chloride solutions during, Russ. J. Inorg. Chem., 2008, vol. 53, no. 6, pp. 842–848.

    Article  Google Scholar 

  29. Borik, M.A., Volkova, T.V., Kuritsyna, I.E., Lomonova, E.E., Myzina, V.A., Ryabochkina, P.A., and Tabachkova, N.Yu., Features of the local structure and transport properties of ZrO2–Y2O3–Eu2O3 solid solutions, J. Alloys Compd., 2019, vol. 770, pp. 320–326.

    Article  CAS  Google Scholar 

  30. Shukla, V., Balani, K., Subramaniam, A., and Omar, S., Phase stability and conductivity in the pseudo ternary system of xYb2O3–(12 – x)Sc2O3–88ZrO2 (0 ≤ x ≤ 5), Solid State Ionics, 2019, vol. 332, pp. 93–101.

    Article  CAS  Google Scholar 

  31. Lytkina, A.A., Orekhova, N.V., Ermilova, M.M., and Yaroslavtsev, A.B., The influence of the support composition and structure (MxZr1 –xO2 –d) of bimetallic catalysts on the activity in methanol steam reforming, Int. J. Hydrogen Energy, 2018, vol. 43, pp. 198–207.

    Article  CAS  Google Scholar 

  32. Trovarelli, A., Catalysis by Ceria and Related Materials, London: Imperial College, 2002, p. 508.

    Book  Google Scholar 

  33. Zhao, Q., Lorenz, H., Turner, S., Lebedev, O.I., Tendeloo, G.V., Rameshan, C., Klotzer, B., Konzett, J., and Penner, S., Catalytic characterization of pure SnO2 and GeO2 in methanol steam reforming, Appl. Catal., A, 2010, vol. 375, pp. 188–195.

    Article  CAS  Google Scholar 

  34. Guarido, C.E.M., Cesar, D.V., Souza, M.M.V.M., and Schmal, M., Ethanol reforming and partial oxidation with Cu/Nb2O5 catalyst, Catal. Today, 2009, vol. 142, pp. 252–257.

    Article  CAS  Google Scholar 

  35. Dancini-Pontes, I., De Souza, M., Silva, F.A., Scaliante, M.H.N.O., Alonso, C.G., Bianchi, G.S., Neto, A.M., Pereira, G.M., and Fernandes-Machado, N.R.C., Influence of the CeO2 and Nb2O5 supports and the inert gas in ethanol steam reforming for H2 production, Chem. Eng. J., 2015, vol. 273, pp. 66–74.

    Article  CAS  Google Scholar 

  36. Bejugama, S. and Pandey, A.K., Effect of Nb2O5 on sintering and mechanical properties of ceria stabilized zirconia, J. Alloys Compd., 2018, vol. 765, pp. 1049–1054.

    Article  CAS  Google Scholar 

  37. Cai, F., Lu, P., Ibrahim, J.J., Fu, Y., Zhang, J., and Sun, Y., Investigation of the role of Nb on Pd–Zr–Zn catalyst in methanol steam reforming for hydrogen production, Int. Hydrogen Energy, 2019, vol. 44, pp. 11 717–11 733.

    Article  CAS  Google Scholar 

  38. Stenina, I.A., Voropaeva, E.Yu., Veresov, A.G., Kapustin, G.I., and Yaroslavtsev, A.B., Effect of precipitation pH and heat treatment on the properties of hydrous zirconium dioxide, Russ. J. Inorg. Chem., 2008, vol. 53, no. 3, pp. 350–356.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (agreement no. RFMEFI58617X0053) and CNRS, France (project no. 38200SF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Lytkina.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lytkina, A.A., Bakuleva, N.A., Orekhova, N.V. et al. Effects of Support Structure and Composition on the Activity of Cu–Ni Catalysts for Methanol Steam Reforming. Inorg Mater 55, 1230–1236 (2019). https://doi.org/10.1134/S0020168519120100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519120100

Keywords:

Navigation