Skip to main content
Log in

Thermal Expansion of Scheelite-Like Molybdate Powders and Ceramics

  • Published:
Inorganic Materials Aims and scope

Abstract

NaxSr1 – 2xNdxMoO4 (x = 0–0.5, Δx = 0.1) solid solutions with the scheelite structure have been synthesized for the first time and their crystallographic parameters have been determined as functions of composition and temperature. Their thermal expansion coefficients have been determined in the temperature range 25–1000°C: αa = (12.9–14.9) × 10–6 °C–1 and αc = (24.9–25.9) × 10–6 °C–1. Using spark plasma sintering at tmax ≈ 872–985°C and τ ≈ 650–750 s, we have prepared ceramics with relative densities in the range 97–99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Borisevich, V.D., Yan, J., Smirnov, A.Y., Bonarev, A.K., Zeng, S., Sulaberidze, G.A., and Jiang, D., Cascade design for isotopically modified molybdenum as an alternative to zirconium alloys, Chem. Eng. Res. Des., 2017, vol. 128, pp. 257–264. https://doi.org/10.1016/j.cherd.2017.10.018

    Article  CAS  Google Scholar 

  2. Burakov, B.E., Anderson, E.B., Shabalev, S.I., Strykanova, E.E., Ushakov, S.V., Trotabas, M., Blanc, J.-Y., Winter, P., and Duco, J., The behavior of nuclear fuel in first days of the Chernobyl accident, Mater. Res. Soc. Symp. Proc., 1997, pp. 1297–1308. https://doi.org/10.1557/PROC-465-1297

  3. Foreman, M.R.St., An introduction to serious nuclear accident chemistry, Cogent Chem., 2015, vol. 1, no. 1, pp. 1–18. https://doi.org/10.1080/23312009.2015.1049111

    Article  CAS  Google Scholar 

  4. Brinkman, K., Fox, K., Marra, J., Reppert, J., Crum, J., and Tang, M., Single phase melt processed powellite (Ba,Ca)MoO4 for the immobilization of Mo-rich nuclear waste, J. Alloys Compd., 2013, vol. 551, pp. 136–142. https://doi.org/10.1016/j.jallcom.2012.09.049

    Article  CAS  Google Scholar 

  5. Bosbach, D., Rabung, T., Brandt, F., and Fanghänel, T., Trivalent actinide coprecipitation with powellite (CaMoO4): secondary solid solution formation during HLW borosilicate-glass dissolution, Radiochim. Acta, 2004, vol. 92, pp. 639–643. https://doi.org/10.1524/ract.92.9.639.54976

    Article  CAS  Google Scholar 

  6. Morozov, V.A., Mironov, A.V., Lazoryak, B.I., Khaikina, E.G., Basovich, O.M., Rossell, M.D., and Van Tendeloo, G., Ag1/8Pr5/8MoO4: an incommensurately modulated scheelite-type structure, J. Solid State Chem., 2006, vol. 179, no. 4, pp. 1183–1191. https://doi.org/10.1016/j.jssc.2005.12.041

    Article  CAS  Google Scholar 

  7. Evdokimov, A.A., Efremov, V.A., Trunov, V.K., Kleinman, I.A., and Dzhurinskii, B.F., Soedineniya redkozemel’nykh elementov. Molibdaty. Vol’framaty (Rare-Earth Molybdates and Tungstates), Moscow: Nauka, 1991.

  8. Hanusa, J., Raman scattering and infra-red spectra of tungstates KLn(WO4)2-Family (Ln: La–Lu), J. Mol. Struct., 1984, vol. 114, pp. 471–474. https://doi.org/10.1016/0022-2860(84)87189-6

    Article  Google Scholar 

  9. Kolysh, A.V., Kryukova, A.I., and Korshunov, I.A., Effect of component solubility on the formation of rare-earth and divalent metal (calcium, strontium, and barium) molybdates, Radiokhimiya, 1973, vol. 15, no. 1, pp. 3–7.

    CAS  Google Scholar 

  10. Kolysh, A.V., Kryukova, A.I., and Korshunov, I.A., Effect of the nature of the solvent on the formation of mixed crystals of promethium with alkaline-earth molybdates in a melt: II. Cocrystallization of promethium with calcium molybdate, Radiokhimiya, 1970, vol. 12, no. 6, pp. 814–818.

    CAS  Google Scholar 

  11. Kolysh, A.V., Kryukova, A.I., and Korshunov, I.A., Effect of the nature of the solvent on the formation of mixed crystals of promethium with alkaline-earth molybdates in a melt: I. Cocrystallization of promethium with calcium molybdate, Radiokhimiya, 1970, vol. 12, no. 6, pp. 808–814.

    CAS  Google Scholar 

  12. Pages, M. and Freundlich, W., Phases of scheelite structure in the neptunium molybdate and sodium or lithium molybdate systems, J. Inorg. Nucl. Chem., 1972, vol. 34, no. 9, pp. 2797–2801. https://doi.org/10.1016/0022-1902(72)80584-0

    Article  CAS  Google Scholar 

  13. Lee, M.R. and Mahe, P., Molybdates et tungstates d’uranium IV et de sodium, C. R. Acad. Sci. Paris, 1974, vol. 279, no. 26, pp. 1137–1170.

    CAS  Google Scholar 

  14. Tabuteau, A. and Pages, M., Identification and crystal chemistry of double molybdates of alkali metals (K, Rb, Cs) and transuranium elements (Np, Pu, Am), J. Inorg. Nucl. Chem., 1980, vol. 42, no. 3, pp. 401–403. https://doi.org/10.1016/0022-1902(80)80015-7

    Article  CAS  Google Scholar 

  15. Tabuteau, A., Pages, M., and Freundlich, W., Sur les phases de structure scheelite dans les systèms molybdate de plutonium–molybdate de lithium ou sodium, Mater. Res. Bull., 1972, vol. 7, no. 7, pp. 691–697. https://doi.org/10.1016/0025-5408(72)90058-X

    Article  CAS  Google Scholar 

  16. Basovich, O.M., Khaikina, E.G., Solodovnikov, S.F., and Tsyrenova, G.D., Phase formation in the systems Li2MoO4–K2MoO4–Ln2(MoO4)3 (Ln = La, Nd, Dy, Er) and properties of triple molybdates LiKLn2(MoO4)4, J. Solid State Chem., 2005, vol. 178, no. 5, pp. 1580–1588. https://doi.org/10.1016/j.jssc.2004.12.016

    Article  CAS  Google Scholar 

  17. Basovich, O.M., Khaikina, E.G., Vasil’ev, E.V., and Frolov, A.M., Phase formation in Li2MoO4–Rb2MoO4–Ln2(MoO4)3 systems and properties of LiRbLn2(MoO4)4, Zh. Neorg. Khim., 1995, vol. 40, no. 12, pp. 2047–2051.

    CAS  Google Scholar 

  18. Morozov, V.A., Lazoryak, B.I., Smirnov, V.A., Mikhailin, V.V., Basovich, O.M., and Khaikina, E.G., Crystal structures and luminescence properties of ternary molybdates LiMNd2(MoO4)4 (M = K, Rb, Tl), Russ. J. Inorg. Chem., 2001, vol. 46, no. 6, pp. 873–879.

    Google Scholar 

  19. Basovich, O.M. and Khaikina, E.G., Synthesis and characterization of lithium thallium rare-earth ternary molybdates, Zh. Neorg. Khim., 1994, vol. 39, no. 9, pp. 1419–1420.

    CAS  Google Scholar 

  20. Szillat, H. and Müller-Buschbaum, Hk., Synthese und Kristallstructur von KCuHoMo4O16, Z. Naturforsch., 1994, vol. 49, pp. 350–354.

    Article  CAS  Google Scholar 

  21. Müller-Buschbaum, Hk. and Gallinat, St., Synthese und Röntgenstrukturanalyse von KCuGd2Mo4O16 und KCuTb2Mo4O16, Z. Naturforsch., 1995, vol. 50, pp. 1794–1798.

    Article  Google Scholar 

  22. Klevtsova, R.F., Vasil’ev, A.D., Glinskaya, L.A., Kruglik, A.I., Kozhevnikova, N.M., and Korsun, V.P., Crystal structure of the Li3Ba2Ln3(MoO4)8 (Ln = Gd, Tm) ternary molybdates, Zh. Strukt. Khim., 1992, vol. 33, no. 3, pp. 126–130.

    CAS  Google Scholar 

  23. Achary, S.N., Patwe, S.J., Mathews, M.D., and Tyagi, A.K., High temperature crystal chemistry and thermal expansion of synthetic powellite (CaMoO4): a high temperature X-ray diffraction (HT-XRD) study, J. Phys. Chem. Solids, 2006, vol. 67, pp. 774–781. https://doi.org/10.1016/j.jpcs.2005.11.009

    Article  CAS  Google Scholar 

  24. Binoy, K.M., Hrudananda, J., Asuvathraman, R., and Govindan Kutty, K.V., Electrical conductivity and thermal expansion behavior of MMoO4 (M = Ca, Sr and Ba), J. Alloys Compd., 2015, vol. 640, pp. 475–479. https://doi.org/10.1016/j.jallcom.2015.04.054

    Article  CAS  Google Scholar 

  25. Pang, L.-X., Zhou, D., Cai, C.-L., and Liu, W.-G., Infrared spectroscopy and microwave dielectric properties of ultra-low temperature firing (K0.5La0.5)MoO4 ceramics, Mater. Lett., 2013, vol. 92, pp. 36–38. https://doi.org/10.1016/j.matlet.2012.10.082

    Article  CAS  Google Scholar 

  26. Pang, L.-X., Zhou, D., Guo, J., Yue, Z.-X., and Yao, X., Microwave dielectric properties of (Li0.5Ln0.5)MoO4 (Ln = Nd, Er, Gd, Y, Yb, Sm, and Ce) ceramics, J. Am. Ceram. Soc., 2015, vol. 98, no. 1, pp. 130–135. https://doi.org/10.1111/jace.13247

    Article  CAS  Google Scholar 

  27. Hérisson de Beauvoir, T., Molinari, F., Chung-Seu, U.C., Michau, D., Denux, D., and Josse, M., Densification of MnSO4 ceramics by cool-SPS: evidences for a complex sintering mechanism and magnetoelectric coupling, J. Eur. Ceram. Soc., 2018, vol. 38, no. 11, pp. 3867–3874.https://doi.org/10.1016/j.jeurceramsoc.2018.04.005

    Article  CAS  Google Scholar 

  28. Herisson de Beauvoir, T., Sangregorio, A., Bertrand, A., Payen, C., Michau, D., Chunga, U.-C., and Josse, M., Cool-SPS stabilization and sintering of thermally fragile, potentially magnetoelectric, NH4FeP2O7 (CJ-3:IL04), Ceram. Int. (in press). https://doi.org/10.1016/j.ceramint.2018.12.103

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Potanina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokarev, M.G., Potanina, E.A., Orlova, A.I. et al. Thermal Expansion of Scheelite-Like Molybdate Powders and Ceramics. Inorg Mater 55, 730–736 (2019). https://doi.org/10.1134/S0020168519070203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519070203

Keywords:

Navigation