Skip to main content
Log in

Effect of the Thermal Shrinkage Behavior of Yb:Lu2O3 Nanopowder Compacts on the Structural and Optical Characteristics of Ceramics

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the thermal shrinkage of ytterbium-doped Lu2O3 nanopowder compacts during heating to 1550°C and examined the effect of the intermediate microstructure of the material on the characteristics of transparent ceramics after hot isostatic pressing at a temperature of 1700°C. The results demonstrate that the optical properties of the ceramics depend on the structural features formed in the presintering step. It has been shown for the first time that rate-controlled densification of powder compacts allows the extinction coefficient of transparent Yb:Lu2O3 ceramics to be reduced by a factor of ~1.8 in comparison with other sintering modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Sanghera, J., Kim, W., Villalobos, G., Shaw, B., Baker, C., Frantz, J., Sadowski, B., and Aggarwal, I., Ceramic laser materials: past and present, Opt. Mater., 2013, vol. 35, no. 4, pp. 693–699.

    Article  CAS  Google Scholar 

  2. Nakao, H., Inagaki, T., Shirakawa, A., Ueda, K., Yagi, H., Yanagitani, T., and Kaminskii, A.A., Yb3+-doped ceramic thin-disk lasers of Lu-based oxides, Opt. Mater. Express, 2014, vol. 4, no. 10, pp. 2116–2121.

    Article  CAS  Google Scholar 

  3. Pirri, A., Toci, G., and Vannini, M., Characterization and comparison of 1% at Yb-doped Lu2O3 and Sc2O3 ceramics as laser gain media, Laser Phys., 2012, vol. 22, no. 12, pp. 1851–1855.

    Article  CAS  Google Scholar 

  4. Lagatsky, A.A., Antipov, O.L., and Sibbett, W., Broadly tunable femtosecond Tm:Lu2O3 ceramic laser operating around 2070 nm, Opt. Express, 2012, vol. 20, no. 17, pp. 19349–19354.

    Article  CAS  PubMed  Google Scholar 

  5. Ikesue, A., Aung, Y.L., Taira, T., Kamimura, T., Yoshida, K., and Messing, G.L., Progress in ceramic lasers, Annu. Rev. Mater. Res., 2006, vol. 36, pp. 397–429.

    Article  CAS  Google Scholar 

  6. Ikesue, A. and Aung, Y.L., Ceramic laser materials, Nat. Photonics, 2008, vol. 2, pp. 721–727.

    Article  CAS  Google Scholar 

  7. Lupei, V., Ceramic laser materials and the prospect for high power lasers, Opt. Mater., 2009, vol. 31, no. 5, pp. 701–706.

    Article  CAS  Google Scholar 

  8. Kim, W., Baker, C., Villalobos, G., Frantz, J., Shaw, B., Lutz, A., Sadowski, B., Kung, F., Hunt, M., Sanghera, J., and Aggarwal, I., Synthesis of high purity Yb3+-doped Lu2O3 powder for high power solid-state lasers, J. Am. Ceram. Soc., 2011, vol. 94, no. 9, pp. 3001–3005.

    Article  CAS  Google Scholar 

  9. Serivalsatit, K., Wasanapiarnpong, T., Kucera, C., and Ballato, J., Synthesis of Er-doped Lu2O3 nanoparticles and transparent ceramics, Opt. Mater., 2013, vol. 35, no. 7, pp. 1426–1430.

    Article  CAS  Google Scholar 

  10. Qiao, X., Huang, H., Yang, H., Zhang, L., Wang, L., Shen, D., Zhan, J., and Tang, D., Fabrication, optical properties and LD-pumped 2.7 μm laser performance of low Er3+ concentration doped Lu2O3 transparent ceramics, J. Alloys Compd., 2015, vol. 640, pp. 51–55.

    Article  CAS  Google Scholar 

  11. Seeley, Z., Cherepy, N., and Payne, S., Two-step sintering of Gd0.3Lu1.6Eu0.1O3 transparent ceramic scintillator, Opt. Mater. Express, 2013, vol. 3, no. 7, pp. 908–912.

    Article  CAS  Google Scholar 

  12. Lee, S.-H., Kupp, E.R., Stevenson, A.J., Anderson, J.M., Messing, G.L., Li, X., and Dickey, E.C., Hot isostatic pressing of transparent Nd:YAG ceramics, J. Am. Ceram. Soc., 2009, vol. 92, no. 7, pp. 1456–1463.

    Article  CAS  Google Scholar 

  13. Chen, I.W. and Wang, X.H., Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature, 2000, vol. 404, pp. 168–171.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, X.H., Chen, P.L., and Chen, I.W., Two-step sintering of ceramics with constant grain-size: I. Y2O3, J. Am. Ceram. Soc., 2006, vol. 89, no. 2, pp. 431–437.

    Article  CAS  Google Scholar 

  15. Serivalsatit, K., Kokuoz, B., Yazgan-Kokuoz, B., Kennedy, M., and Ballato, J., Synthesis, processing, and properties of submicrometer-grained highly transparent yttria ceramics, J. Am. Ceram. Soc., 2010, vol. 93, no. 5, pp. 1320–1325.

    Article  CAS  Google Scholar 

  16. Serivalsatit, K. and Ballato, J., Submicrometer grain-sized transparent erbium-doped scandia ceramics, J. Am. Ceram. Soc., 2010, vol. 93, no. 11, pp. 3657–3662.

    Article  CAS  Google Scholar 

  17. Palmour, H. and Johnson, D.R., Phenomenological model for rate-controlled sintering, in Sintering and Related Phenomena, New York: Gordon and Breach, 1967, pp. 779–791.

    Google Scholar 

  18. Huckabee, M.L., Hare, T.M., and Palmour, H., Rate controlled sintering as a processing method, in Processing of Crystalline Ceramics, Materials Science Research, Boston: Springer, 1978, pp. 205–215.

  19. Skorokhod, V.V. and Ragulya, A.V., Rate controlled sintering as a way of controlling the microstructure of ceramics and similar sintered materials, Poroshk. Metall., 1994, nos. 3–4, pp. 1–10.

  20. Abe, O., Machinability of rate-controlled sintered alumina, J. Ceram. Soc. Jpn., 1992, vol. 100, no. 1166, pp. 1196–1199.

    Article  CAS  Google Scholar 

  21. Rajeswari, K., Reddy, A.R.S., Hareesh, U.S., Saha, B.P., and Johnson, R., Microstructural control of stabilized zirconia ceramics (8YSZ) through modified conventional sintering methodologies, Sci. Sinter., 2010, vol. 42, no. 1, pp. 91–97.

    Article  CAS  Google Scholar 

  22. Osipov, V.V., Kotov, Yu.A., Ivanov, M.G., Samatov, O.M., Lisenkov, V.V., Platonov, V.V., Murzakaev, A.M., Medvedev, A.I., and Azarkevich, E.I., Laser synthesis of nanopowders, Laser Phys., 2006, vol. 16, no. 1, pp. 116–125.

    Article  CAS  Google Scholar 

  23. Rajeswari, K., Padhi, S., Reddy, A.R.S., Johnson, R., and Das, D., Studies on sintering kinetics and correlation with the sinterability of 8Y zirconia ceramics based on the dilatometric shrinkage curves, Ceram. Int., 2013, vol. 39, no. 5, pp. 4985–4990.

    Article  CAS  Google Scholar 

  24. De Florio, D.Z., Esposito, V., Traversa, E., Muccillo, R., and Fonseca, F.C., Master sintering curve for Gd-doped CeO2 solid electrolytes, J. Therm. Anal. Calorim., 2009, vol. 147, pp. 143–147.

    Article  CAS  Google Scholar 

  25. Shao, W.Q., Chen, S.O., Li, D., Cao, H.S., Zhang, Y.C., and Zhang, S.S., Apparent activation energy for densification of α-Al2O3 powder at constant heating-rate sintering, Bull. Mater. Sci., 2008, vol. 31, no. 6, pp. 903–906.

    Article  CAS  Google Scholar 

  26. Kaminskii, A.A., Akchurin, M.S., Becker, P., Ueda, K., Bohaty, L., Shirakawa, A., Tokurakawa, M., Takaichi, K., Yagi, H., Dong, J., and Yanagitani, T., Mechanical and optical properties of Lu2O3 host-ceramics for Ln3+ lasants, Laser Phys. Lett., 2008, vol. 5, no. 4, pp. 300–303.

    Article  CAS  Google Scholar 

Download references

FUNDING

This work was supported by the Russian Foundation for Basic Research, project no. 16-03-00193 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Maksimov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimov, R.N., Khrustov, V.R., Shitov, V.A. et al. Effect of the Thermal Shrinkage Behavior of Yb:Lu2O3 Nanopowder Compacts on the Structural and Optical Characteristics of Ceramics. Inorg Mater 55, 634–639 (2019). https://doi.org/10.1134/S0020168519050133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519050133

Keywords:

Navigation