Skip to main content
Log in

Thermal Properties of a Eutectic InSb + MnSb Composite

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied the thermal conductivity κ(T) and thermal diffusivity a(T) of a eutectic InSb + MnSb composite in the range 80–700 K with the heat flux parallel and perpendicular to MnSb inclusions. The phonon thermal conductivity data have been analyzed in terms of the Holland model. The weaker temperature dependence of thermal conductivity in the range 250–450 K is due to resonance transfer of the energy of ionized impurity states. The observed anisotropy in κ(T) in the range 80–250 K is associated with the scattering of long-wavelength phonons by interfaces. The anomalies in κ(T) and a(T) observed in the phase transition region are due to phonon scattering by magnetic order parameter fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Marenkin, S.F., Kochura, A.V., Fedorchenkov, I.V., Izotov, A.D., Vasil’ev, M.G., Trukhan, V.M., Shelkovaya, T.V., Novodvorsky, D.A., and Zheludkevich, A.L., Growth of eutectic composites in the InSb–MnSb system, Inorg. Mater., 2016, vol. 52, no. 3, pp. 268–273.

    Article  CAS  Google Scholar 

  2. Mamedov, I.Kh., Arasly, D.H., Khalilova, A.A., and Rahimov, R.N., Anisotropic electrical properties of a eutectic InSb + MnSb composite, Inorg. Mater., 2016, vol. 52, no. 4, pp. 423–428. https://doi.org/10.1134/S0020168516040105

    Article  CAS  Google Scholar 

  3. Ivanov, V.A., Pashkova, O.N., and Sanygin, V.P., Magnetic semiconductor (In,Mn)Sb: transport and magnetic properties, J. Magn. Magn. Mater., 2007, vol. 310, no. 2, pp. 2132–2134.

    Article  CAS  Google Scholar 

  4. Magerusan, L., Deac, I.G., Dorolti, E., Coldea, M., Rednic, V., and Neumann, M., Magnetic cluster development in In1 – xMnxSb semiconductor alloys, Cent. Eur. J. Phys., 2010, vol. 8, no. 4, pp. 620–627. https://doi.org/10.2478/s11534-009-0140-7

    Article  CAS  Google Scholar 

  5. Novotortsev, V.M., Marenkin, S.F., Fedorchenko, I.V., Kochura, A.V., Drogunov, S.V., Lashkul, A., and Lahderanta, E.I., Synthesis and magnetic properties of the InSb–MnSb eutectic, Russ. J. Inorg. Chem., 2011, vol. 56, no. 12, pp. 1951–1956.

    Article  CAS  Google Scholar 

  6. Aliyev, M.I., Khalilova, A.A., Arasly, D.H., Rahimov, R.N., Tanoglu, M., and Ozyuzer, L., Features of electron and phonon processes in GaSb–FeSb1.3, J. Phys. D: Appl. Phys., 2003, vol. 36, pp. 2627–2633. doi 10.10880022-37273621005

  7. Balagurov, B.Ya. and Vinogradov, G.A., Thermal conductivity of composites with needle-shaped inclusions, Composites, Part A, 2006, vol. 37, pp. 1805–1814. https://doi.org/10.1016/j.compositesa.2005.08.019

    Article  Google Scholar 

  8. Krjuk, V.V., Molodtzev, D.A., Pilugin, A.V., and Povzner, A.A., Influence of a circulating current on the thermal conductivity of heterogeneous systems, Tech. Phys., 2003, vol. 48, no. 8, pp. 1016–1019.

    Article  CAS  Google Scholar 

  9. Burel’nikov, V.D., Kuzavko, Yu.A., and Shavrov, V.G., Thermal conductivity of magnetic materials near their phase transitions, Fiz. Nizk. Temp. (Kiev), 1987, vol. 13, no. 10, pp. 1075–1077.

    Google Scholar 

  10. Devyatkov, E.D. and Tikhonov, V.V., Thermal conductivity and heat capacity of yttrium calcium garnets, Fiz. Tverd. Tela (Leningrad), 1967, vol. 9, no. 3, pp. 772–777.

    Google Scholar 

  11. Batdalov, A.B., Gamzatov, A.G., Aliev, A.M., Khanov, L.N., Mukhuchev, A.A., and Kamaludinova, Kh.E., Thermal physical properties of the La0.825Sr0.175Mn single crystals, Phys. Solid State, 2017, vol. 59, no. 9, pp. 1879–1882. https://doi.org/10.21883/FTT.2017.09.44861.029

    Article  CAS  Google Scholar 

  12. Aliev, M.I., Arasly, D.G., Guseinov, R.E., and Dzhabbarov, R.M., Thermal conductivity and thermal diffusivity of an InSb–GaSb based eutectic, Izv. Akad. Nauk SSSR, Neorg. Mater., 1979, vol. 15, no. 8, pp. 1320–1323.

    CAS  Google Scholar 

  13. Aliev, M.I., Guseinov, R.E., and Arasly, D.G., Light-pulse method for measuring the thermal diffusivity of semiconductors, Inzh.-Fiz. Zh., 1972, vol. 22, no. 6, pp. 1056–1061.

    Google Scholar 

  14. Aliev, M.I., Dzhabbarov, R.M., Arasly, D.G., and Suleimanov, Z.I., Thermal and electrical properties of MnSb, Izv. Akad. Nauk SSSR, Neorg. Mater., 1981, vol. 17, no. 9, pp. 1623–1625.

    CAS  Google Scholar 

  15. Aliev, M.I., Gashimzade, F.M., and Dzhabbarov, R.M., Effect of heavy hole constant energy surface anisotropy on the Hall coefficient of p-InSb, Dokl. Akad. Nauk Azerbaidzhana, 1977, vol. 33, no. 9, pp. 15–18.

    CAS  Google Scholar 

  16. Aliev, M.I., Aliev, S.A., Abdinova, S.G., and Gashimzade, F.M., Transport phenomena in heavily doped p-InSb, Fiz. Tekh. Poluprovodn. (S.-Peterburg), 1974, vol. 8, no. 11, pp. 1544–1548.

  17. Lobanov, N.N., Izotov, A.D., Pashkova, O.N., and Sanygin, V.P., Mn, Zn, and Cd incorporation into the crystal lattice of indium antimonide, Inorg. Mater., 2014, vol. 50, no. 6, pp. 541–545.

    Article  CAS  Google Scholar 

  18. Klemens, P.G., Thermal resistance due to point defects at high temperatures, Phys. Rev., 1960, vol. 119, no. 9, pp. 507–509. https://doi.org/10.1103/PhysRev.119.507

    Article  CAS  Google Scholar 

  19. Holland, M.G., Analysis of thermal conductivity, Phys. Rev. B: Condensed Matter Mater. Phys., 1971, vol. 3, pp. 3575–3576. https://doi.org/10.1103/PhysRevB.3.3575

    Article  Google Scholar 

  20. Gullou, G.Le and Albany, H.I., Phonon conductivity of InAs, Phys. Rev. B: Condensed Matter Mater. Phys., 1972, vol. 5, pp. 2301–2308. https://doi.org/10.1103/PhysRevB.5.2301

    Article  Google Scholar 

  21. Mamedov, I.Kh., Ragimov, R.N., Khalilova, A.A., and Arasly, D.G., Thermal properties of manganese-doped InSb, Trans. Natl. Acad. Sci., Phys. Astron., 2017, vol. 37, no. 2, pp. 36–42.

    Google Scholar 

  22. Koshino, S. and Ando, T., Resonance transfer of ionization in semiconductors, J. Phys. Soc. Jpn., 1961, vol. 16, pp. 1151–1157. https://doi.org/10.1143/JPSJ.16.1151

    Article  Google Scholar 

  23. Smirnov, I.A. and Tamarchenko, V.I., Elektronnaya teploprovodnost' v metallakh i poluprovodnikakh (Electronic Heat Conduction in Metals and Semiconductors), Leningrad: Nauka, 1972.

  24. Dobrovolska, M., Tivakornsasithorn, K., Liu, X., Furdyna, I.K., Yu, K.M., and Walukicwier, W., Controlling the Curie temperature in (Ga,Mn)As through location of Fermi level within the impurity band, Nat. Mater., 2012, vol. 11, no. 5, pp. 444–449. https://doi.org/10.1038/NMAT3250

    Article  Google Scholar 

  25. Taylor, A.E., Berlijn, T., Hahn, S.E., May, A.F., Williams, T.J., Poudel, L., Calder, S., Fishman, R.S., Stone, M.B., Aczel, A.A., Cao, H.B., Lumsden, M.D., and Christianson, A.D., Influence of interstitial Mn on magnetism in the room temperature ferromagnet Mn1 + δSb, Phys. Rev. B: Condensed Matter Mater. Phys., 2015, vol. 91, paper 224 418. https://doi.org/10.1103/PhysRevB.91.224418

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Rahimov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamedov, I.K., Arasly, D.G., Khalilova, A.A. et al. Thermal Properties of a Eutectic InSb + MnSb Composite. Inorg Mater 55, 320–324 (2019). https://doi.org/10.1134/S0020168519040101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519040101

Keywords:

Navigation