Skip to main content
Log in

Anisotropic electrical properties of a eutectic InSb + MnSb composite

  • Published:
Inorganic Materials Aims and scope

Abstract

The temperature dependences of the Hall coefficient, electrical conductivity, and thermoelectric power for a eutectic InSb + MnSb composite have been studied in the temperature range from 80 to 700 K. Electron-microscopic results confirm that the system is in a two-phase state and consists of an InSb matrix and needle-like MnSb metallic inclusions. The inclusions are surrounded by interfacial zones ~0.3 μm in width. The observed anisotropy in the transport properties of the material is attributed to a short-circuiting effect of the metallic inclusions. Interpretation in terms of effective medium theory with allowance for the interfacial zones suggests that they make a significant contribution to the electrical conductivity anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Müller, A. and Wilhem, M., Uber den gerichteten Einbau von Schwermetall Phasen in A3B5-Verbindungen (die Eutektika InSb–NiSb, InSb–FeSb, InSb–MnSb, InSb-CrSb), J. Phys. Chem. Solids, 1965, vol. 26, no. 12, pp. 2021–2028.

    Google Scholar 

  2. Balagurov, B.Ya., On the theory of galvanomagnetic properties of composites, J. Exp. Theor. Phys., 2014, vol. 118, no. 2, pp. 311–322.

    Article  CAS  Google Scholar 

  3. Balagurov, B.Ya., Symmetry transformation in the problem of the conductivity of anisotropic composites, J. Exp. Theor. Phys., 2013, vol. 144, no. 5, pp. 903–911.

    Article  Google Scholar 

  4. Emets, Yu.P., Effective parameters of multicomponent dielectrics with hexagonal structure, Tech. Phys., 2002, vol. 47, no. 1, pp. 49–57.

    Article  CAS  Google Scholar 

  5. Garboczi, E.J. and Berryman, J.G., New effective theory for the diffusivity or conductivity of a multi-scale concrete microstructure model, Concrete Sci. Eng. 2000, vol. 2, pp. 88–96.

    Google Scholar 

  6. Lutz, M.P. and Zimmerman, R.W., Effect of an inhomogeneous interphase zone on the bulk modulus and conductivity of a particulate composite, Int. J. Solids Struct., 2005, vol. 42, no. 2, pp. 429–437.

    Article  Google Scholar 

  7. Moosavi, A. and Sarkomaa, P., The effective conductivity of three-phase composite materials with circular cylindrical inclusions, J. Phys. D: Appl. Phys., 2003, vol. 36, pp. 1644–1650.

    Article  CAS  Google Scholar 

  8. Kalnin, J.R. and Kotomin, E., Modified Maxwell- Garnett equation for the effective transport coefficient in homogeneous media, J. Phys. A: Math. Gen., 1998, vol. 31, pp. 7227–7234.

    Article  CAS  Google Scholar 

  9. Krjuk, V.V., Molodtsev, D.A., Pilyugin, A.V., and Povzner, A.A., Effect of a circulating current on the thermal conductivity of heterogeneous systems, Tech. Phys., 2003, vol. 48, no. 8, pp. 1016–1019.

    Article  CAS  Google Scholar 

  10. Aliyev, M.I., Khalilova, A.A., Arasly, D.H., Rahimov, R.N., Tanoglu, M., and Ozyuzer, L., Features of electron and phonon processes in GaSb–FeSb1.3, J. Phys. D: Appl. Phys, 2003, vol. 36, pp. 2627–2633.

    Article  CAS  Google Scholar 

  11. Aliyev, M.I., Arasly, D.H., Rahimov, R.N., Khalilova, A.A., Mammadov, I.Kh., and Jabbarov, R.M., Thermal properties of eutectic compositions based on InSb and GaSb, Trans. Azerb. Natl. Acad. Sci.: Phys. Astron., 2007, vol. 27, no. 2, pp. 72–80.

    Google Scholar 

  12. Aliev, M.I., Jabbarov, R.M., and Alieva, M.A., Transport processes in eutectic InSb–MnSb alloys, Izv. Akad. Nauk SSSR, Neorg. Mater., 1975, vol. 11, no. 6, pp. 1135–1137.

    CAS  Google Scholar 

  13. Rahimov, R.N., Khalilova, A.A., Arasly, D.H., Aliyev, M.I., Tanoglu, M., and Ozyuzer, L., Thermostable tensoresistors of Co doped GaSb–FeGa1.3 eutectic composites, Sens. Actuators, A, 2008, vol. 147, nos. 2–3, pp. 436–440.

    Article  CAS  Google Scholar 

  14. Mamedov, I.Kh., Ragimov, R.N., Khalilova, A.A., Arasly, D.G., and Aliev, M.I., Influence of doping on the microstructure and kinetic parameters of GaSb–FeGa1. 3 eutectics, Crystallogr. Rep., 2012, vol. 57, no. 7, pp. 923–926.

    Article  CAS  Google Scholar 

  15. Aliev, M.I., Arasly, D.H., Khalilova, A.A., Rahimov, R.N., Yanushkevich, K.I., and Galyas, A.I., Preparation and structure of FeSb–InSb composites thin films, AJP Fiz., 2013, vol. 15, no. 2, pp. 68–70.

    Google Scholar 

  16. Novotortsev, V.M., Kochura, A.V., Marenkin, S.F., Fedorchenko, I.V., Drogunov, S.V., et al., Synthesis and magnetic properties of the InSb–MnSb eutectic, Russ. J. Inorg. Chem., 2011, vol. 56, no. 12, pp. 1951–1956.

    Article  CAS  Google Scholar 

  17. Novotortsev, V.M., Zakharov, I.S., Kochura, A.V., Marenkin, S.F., Laiho, R., Lahderanta, E., Lashkul, A., Versov, A.G., Molchanov, A.V., and Yurev, G.S., Ferromagnetism of manganese-doped InSb alloys, Russ. J. Inorg. Chem., 2006, vol. 51, no. 10, pp. 1627–1631.

    Article  Google Scholar 

  18. Kondrin, M.V., Popova, S.V., Gizatullin, V.R., Sazanova, O.A., Kalyaeva, N.V., Lyapin, A.G., Brazhkin, V.V., Gudoshnikov, S.A., and Prokhorova, Yu.V., Ferromagnetism in the high-pressure phases of (GaSb)1–xMnx, JETP Lett., 2006, vol. 84, no. 4, pp. 228–232.

    Article  Google Scholar 

  19. Herring, C., Effect of random in homogenates of electrical and galvanomagnetic measurement, J. Appl. Phys., 1960, vol. 31, no. 11, pp. 1939–1953.

    Article  Google Scholar 

  20. Kirkpatrick, S., Percolation and conduction, Rev. Mod. Phys., 1973, vol. 45, pp. 574–588.

    Article  Google Scholar 

  21. Xue, Q., A percolation model of metal–insulator composites, Phys. B (Amsterdam, Neth.), 2003, vol. 325, pp. 195–198.

    Article  CAS  Google Scholar 

  22. Maxwell-Garnett, J.C., Colours in metal glasses and in metallic films, Philos. Trans. R. Soc. London, 1904, vol. 203, p. 385.

    Article  Google Scholar 

  23. Bruggeman, D.A.G., Berechnung verschiedener physikalischer Konstanten von heterogenen Systemen, Ann. Phys. (Leipzig), 1935, vol. 24, no. 5, p. 636.

    Article  CAS  Google Scholar 

  24. Odelevskii, V.I., Calculation of generalized conductivity of heterogeneous systems: 1. Two-phase matrix systems containing nonelongated inclusions, Zh. Tekh. Fiz., 1951, vol. 21, no. 6, pp. 667–685.

    Google Scholar 

  25. Zimin, C.P., Classification of electrical properties of porous silicon, Semiconductors, 2000, vol. 34, no. 3, pp. 353–357.

    Article  CAS  Google Scholar 

  26. Pescherova, S.M., Nepomnyaschikh, A.I., Pavlova, A.A., Eliseev, I.A., and Presnyakov, R.V., Morphological characteristics of grain boundaries in multicrystalline silicon, Semiconductors, 2014, vol. 48, no. 4, pp. 476–480.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Rahimov.

Additional information

Original Russian Text © I.Kh. Mamedov, D.H. Arasly, A.A. Khalilova, R.N. Rahimov, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 4, pp. 468–472.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamedov, I.K., Arasly, D.H., Khalilova, A.A. et al. Anisotropic electrical properties of a eutectic InSb + MnSb composite. Inorg Mater 52, 423–428 (2016). https://doi.org/10.1134/S0020168516040105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516040105

Keywords

Navigation