Skip to main content
Log in

Comparative Study of GaAs/GaInP and GaAs/AlGaAs Quantum Wells Grown by Metalorganic Vapor Phase Epitaxy

  • Published:
Inorganic Materials Aims and scope

Abstract—

This paper presents results of a comparative experimental study aimed at producing GaAs/GaInP and GaAs/AlGaAs quantum wells (QWs) by metalorganic vapor phase epitaxy. The photoluminescence signal of the GaAs/GaInP QWs is shown to have a higher intensity (by a factor of 50–100) and, at the same time, a larger width (by a factor of ~2.5) in comparison with the GaAs/AlGaAs QWs. We analyze different approaches to controlling emission spectra of these QWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Razeghi, M., Technology of Quantum Devices, Boston: Springer, 2010.

    Book  Google Scholar 

  2. Vurgaftman, I., Meyer, J.R., and Ram-Mohan, L.R., Band parameters for III–V compound semiconductors and their alloys, J. Appl. Phys., 2001, vol. 89, no. 11, pp. 5815–5875.

    Article  CAS  Google Scholar 

  3. Chand, N., Chu, S.N.G., Dutta, N.K., Lopata, J., Geva, M., Syrbu, A.V., Mereutza, A.Z., and Yakovlev, V.P., Growth and fabrication of high-performance 980-nm strained InGaAs quantum-well lasers for erbium-doped fiber amplifiers, IEEE J. Quantum Electron., 1994, vol. 30, no. 2, pp. 424–439.

    Article  CAS  Google Scholar 

  4. Bhat, R., Koza, M.A., Brasil, M.J.S.P., Nahory, R.E., Palmstrom, C.J., and Wilkens, B.J., Interface control in GaAs/GaInP superlattices grown by MOCVD, J. Cryst. Growth, 1992, vol. 124, pp. 576–582.

    Article  CAS  Google Scholar 

  5. Tsai, C.Y., Moser, M., Geng, C., Härle, V., Forner, T., Michier, P., Hangleiter, A., and Scholz, F., Interface characteristics of GaInP/GaAs double heterostructures grown by metalorganic vapor phase epitaxy, J. Cryst. Growth, 1994, vol. 145, pp. 786–791.

    Article  CAS  Google Scholar 

  6. Prost, W., Scheffer, F., Liu, Q., Lindner, A., Lakner, H., Gyuro, I., and Tegude, F.J., Metalorganic vapor phase epitaxial grown heterointerfaces to GaInP with group-III and group-V exchange, J. Cryst. Growth, 1995, vol. 146, pp. 538–543.

    Article  CAS  Google Scholar 

  7. Chiou, S.W., Lee, C.P., Hong, J.M., Chen, C.W., and Tsou, Y., Optimization of MOVPE-grown GaInP/GaAs quantum well interfaces, J. Cryst. Growth, 1999, vol. 206, pp. 166–170.

    Article  CAS  Google Scholar 

  8. Kudela, R., Kucera, M., Olejnikova, B., Elia, P., Hasenohrl, S., and Novak, J., Formation of interfaces in InGaP/GaAs/InGaP quantum wells, J. Cryst. Growth, 2000, vol. 212, pp. 21–28.

    Article  CAS  Google Scholar 

  9. Zhang, X.B., Ryou, J.H., Dupius, R.D., Walter, G., and Holonyak, N., Jr., Metalorganic chemical vapor deposition growth and characterization of InGaP/GaAs superlattices, J. Electron. Mater., 2006, vol. 35, pp. 705–710.

    Article  Google Scholar 

  10. Knauer, A., Krispin, P., Balakrishnan, V.R., and Weyers, M., Properties of (In,Ga)(As,P)/GaAs interfaces grown under different metalorganic vapor phase epitaxy conditions, J. Cryst. Growth, 2003, vol. 248, pp. 364–368.

    Article  CAS  Google Scholar 

  11. Bugge, F., Knauer, A., Gramlich, S., Rechenberg, I., Beister, G., Sebastian, J., Wenzel, H., Erbert, G., and Weyers, M., MOVPE growth of AlGaAs/GaInP diode lasers, J. Electron. Mater., 2000, vol. 29, pp. 57–61.

    Article  CAS  Google Scholar 

  12. Bugge, F., Zeimer, U., Gramlich, S., Rechenberg, I., Sebastian, J., Erbert, G., and Weyers, M., Effect of growth conditions and strain compensation on indium incorporation for diode lasers emitting above 1050 nm, J. Cryst. Growth, 2000, vol. 221, pp. 496–502.

    Article  CAS  Google Scholar 

  13. Marmalyuk, A.A., Govorkov, O.I., Petrovsky, A.V., Nikitin, D.B., Padalitsa, A.A., Bulaev, P.V., Budkin, I.V., and Zalevsky, I.D., Investigation of indium segregation in InGaAs/(Al)GaAs quantum wells grown by MOCVD, J. Cryst. Growth, 2002, vol. 237–239, pp. 264–268.

    Article  Google Scholar 

  14. Jasik, A., Wnuk, A., Wojcik-Jedlinska, A., Jakiela, R., Muszalski, J., Strupinski, W., and Bugajski, M., The influence of the growth temperature and interruption time on the crystal quality of InGaAs/GaAs QW structures grown by MBE and MOCVD methods, J. Cryst. Growth, 2008, vol. 310, pp. 2785–2792.

    Article  CAS  Google Scholar 

  15. Pearton, S.J., Ren, F., Hobson, W.S., Abernathy, C.R., and Chakrabarti, U.K., Comparison of surface recombination velocities in InGaP and AlGaAs mesa diodes, J. Vac. Sci. Technol., B, 1994, vol. 12, pp. 142–146.

    Article  CAS  Google Scholar 

  16. Olson, J.M., Ahrenkiel, R.K., Dunlavy, D.J., Keyes, B., and Kibbler, A.E., Ultralow recombination velocity at Ga0.5In0.5P/GaAs heterointerfaces, Appl. Phys. Lett., 1989, vol. 55, no. 12, pp. 1208–1210.

    Article  CAS  Google Scholar 

  17. Pavesi, L. and Guzzi, M., Photoluminescence of AlxGa1 – xAs alloys, J. Appl. Phys., 1994, vol. 75, no. 10, pp. 4779–4842.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Federation Ministry of Education and Science as part of the program for improving the competitiveness of the National Nuclear Research University MEPhI (Moscow Engineering Physics Institute), agreement no. 02.a03.21.0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ladugin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladugin, M.A., Andreev, A.Y., Yarotskaya, I.V. et al. Comparative Study of GaAs/GaInP and GaAs/AlGaAs Quantum Wells Grown by Metalorganic Vapor Phase Epitaxy. Inorg Mater 55, 315–319 (2019). https://doi.org/10.1134/S0020168519040095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519040095

Keywords:

Navigation