Skip to main content
Log in

Effect of Initial Composition on the Liquid–Solid Phase Transition in Cr–W Alloy Nanoparticles

  • Published:
Inorganic Materials Aims and scope

Abstract

Phase transformations in nanoscale systems are influenced by a variety of different factors. In this study, we use methods of equilibrium chemical thermodynamics to demonstrate that the initial composition of a nanosystem is among such factors and model the influence of initial composition on the phase diagram of Cr–W nanoparticles in the two-phase region between their liquidus and solidus temperatures. We show that the equilibrium compositions of the liquid and solid phases and phase transition temperatures depend on the initial composition of the nanoparticles. At any composition, the liquidus temperature of a nanoparticle is lower than that of a corresponding macroscopic system. The solidus temperature of a nanoparticle can be both lower and higher than that of a corresponding macroscopic system, depending on composition. As the particle size decreases to the nanometer range, the temperature range of the heterogeneous region narrows down.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Andrievskii, R.A. and Ragulya, A.V., Nanostrukturnye materialy (Nanostructured Materials), Moscow: Akademiya, 2005.

  2. Alymov, M.I. and Shorshorov, M.Kh., Effect of size factors on the melting point and surface tension of ultrafine particles, Metally, 1999, no. 2, pp. 29–31.

  3. Park, J. and Lee, J., Phase diagram reassessment of Ag–Au system including size effect, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2008, vol. 32, no. 1, pp. 135–141.

    Article  CAS  Google Scholar 

  4. Sopoušek, J., Vřešt'ál, J., Pinkas, J., Broz, P., Buršík, J., Styskalik, A., Skoda, D., Zobak, A., and Lee, J., Cu–Ni nanoalloy phase diagram—prediction and experiment, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2014, no. 45, pp. 33–39.

  5. Monji, F. and Jabbareh, M.A., Thermodynamic model for prediction of binary alloy nanoparticle phase diagram including size-dependent surface tension effect, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2017, vol. 58, pp. 1–5.

    Article  CAS  Google Scholar 

  6. Ivas, T., Grundy, A.N., Povoden-Karadeniz, E., and Gauckler, L.J., Phase diagram of CeO2–CoO for nano-sized powders, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2012, no. 36, pp. 57–64.

  7. Sim, K. and Lee, J., Phase stability of Ag–Sn nanoparticles, J. Alloys Compd., 2014, vol. 590, pp. 140–146.

    Article  CAS  Google Scholar 

  8. Ghasemi, M., Zanolli, Z., Stankovski, M., and Johansson, J., Size- and shape-dependent phase diagram of In–Sb nano-alloys, Nanoscale, 2015, vol. 7, pp. 17 387–17 396.

  9. Sopoušek, J., Kryštofová, A., Premović, M., Zobač, O., Polsterová, S., Brož, P., and Buršík, J., Au–Ni nanoparticles: phase diagram prediction, synthesis, characterization and thermal stability, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2017, vol. 58, pp. 25–33.

    Article  CAS  Google Scholar 

  10. Guisbiers, G., Mendoza-Cruz, R., Bazán-Díaz, L., Velázquez-Salazar, J.J., Mendoza-Pérez, R., Robledo-Torres, J., Rodriguez-Lopez, J.-L., Montejano-Carrizales, J.M., Whetten, R.L., and Yakamán, M.J., Electrum, the gold–silver alloy, from the bulk scale to the nanoscale: synthesis, properties, and segregation rules, ASC Nano, 2015, vol. 10, no. 1, pp. 188–198.

    Article  CAS  Google Scholar 

  11. Guisbiers, G., Mendoza-Pérez, R., Bazán-Díaz, L., Mendoza-Cruz, R., Velázquez-Salazar, J.J., and Yakamán, M.J., Size and shape effects on the phase diagrams of nickel-based bimetallic nanoalloys, J. Phys. Chem., 2017, vol. 121, no. 12, pp. 6930–6939.

    CAS  Google Scholar 

  12. Cui, M., Lu, H., Jiang, H., Cao, Z., and Meng, X., Phase diagram of continuous binary nanoalloys: size, shape and segregation effects, Sci. Rep., 2017, no. 7, pp. 1–10.

  13. Fedoseev, V.B., Shishulin, A.V., Titaeva, E.K., and Fedoseeva, E.N., On the possibility of the formation of a NaCl–KCl solid-solution crystal from an aqueous solution at room temperature in small-volume systems, Phys. Solid State, 2016, vol. 58, no. 10, pp. 2095–2100.

    Article  CAS  Google Scholar 

  14. Shishulin, A.V. and Fedoseev, V.B., Size effect in the phase separation of a Cr–W solid solution, Inorg. Mater., 2018, vol. 54, no. 5, pp. 446–449.

    Article  Google Scholar 

  15. Fedoseev, V.B., Potapov, A.A., Shishulin, A.V., and Fedoseeva, E.N., Size and shape effect on the phase transitions in a small system with fractal interphase boundaries, Euras. Phys. Tech. J., 2017, vol. 14, no. 1 (27), pp. 18–24.

  16. Fedoseev, V.B. and Shishulin, A.V., Shape effect in layering of solid solutions in small volume: bismuth–antimony alloy, Phys. Solid State, 2018, vol. 60, no. 7, pp. 1382–1388.

    Article  Google Scholar 

  17. Shishulin, A.V., Fedoseev, V.B. and Shishulina, A.V. Environment-dependent phase equilibria in a small volume system in case of decomposition of Bi-Sb solid solutions, Butlerov comm., 2017, vol. 51, no. 7, pp. 31–37.

  18. Straumal, B., Baretzky, B., Mazilkin, A., Protasova, S., Myatiev, A., and Straumal, P., Increase of Mn solubility with decreasing grain size in ZnO, J. Eur. Ceram. Soc., 2009, vol. 10, no. 29, pp. 1963–1970.

    Article  CAS  Google Scholar 

  19. Sutter, E.A. and Sutter, P.W., Size-dependent phase diagram of nanoscale alloy drops used in vapor–liquid–solid growth of semiconductor nanowires, ACS Nano, 2010, vol. 4, no. 8, pp. 4943–4947.

    Article  CAS  PubMed  Google Scholar 

  20. Tovbin, Yu.K., Lower size boundary for the applicability of thermodynamics, Russ. J. Phys. Chem. A, 2012, vol. 86, no. 9, pp. 1356–1369.

    Article  CAS  Google Scholar 

  21. Coelho, D., Bekki, S., and Thovert, J.-H., Uptake on fractal particles. 1. Theoretical framework, J. Geophys. Res., 2000, vol. 105, no. 3, pp. 3905–3916.

    Article  CAS  Google Scholar 

  22. Bose, A., Schuh, C.A., Tobia, J.C., Tuncer, N., Mykulowycz, N.M., Preston, A., Barbati, A.C., Kernan, B., Gibson, M.A., Krause, D., Brzezinski, T., Schroers, J., Fulop, R., Myerberg, J.S., Sowerbutts, M., Chiang, Y.-M., Hart, A.J., Sachs, E.M., Lomeli, E.E., and Lund, A.C., Traditional and additive manufacturing of a new tungsten heavy alloy alternative, Int. J. Refract. Met. Hard Mater., 2018, vol. 73, pp. 22–28.

    Article  CAS  Google Scholar 

  23. Magomedov, M.N., Nanostructuring and plasticity of crystals under compression, Tech. Phys., 2016, vol. 86, no. 5, pp. 722–729.

    Article  CAS  Google Scholar 

  24. Fedoseev, V.B. and Shishulin, A.V., Effect of initial composition on phase equilibria in Cr–W nanoparticles, IX mezhdunarodnaya nauchnaya konferentsiya “Kinetika i mekhanizm kristallizatsii. Kristallizatsiya i materialy budushchego” (IX Int. Conf. Crystallization Kinetics and Mechanisms: Crystallization and Materials of the Future), Ivanovo, 2016, pp. 28–29.

  25. Shirinyan, A., Wilde, J., and Bilogorodskyy, Y., Solidification loops in the phase diagram of nanoscale alloy particles: from a specific example towards a general vision, J. Mater. Sci., 2018, vol. 53, no. 4, pp. 2859–2879.

    Article  CAS  Google Scholar 

  26. Voronin, G.F. and Belov, G.V., Racchet fazovykh ravnovesii s ispol’zovaniem termodinamicheskikh baz dannykh (Assessment of Phase Equilibria Using Thermodynamic Databases), Moscow: Mosk. Gos. Univ., 2014.

  27. Shebzukhova, M.A., Shebzukhov, Z.A., and Shebzukhov, A.A., Interfacial tension of a crystalline nanoparticle in the liquid mother phase in a one-component metallic system, Phys. Solid State, 2012, vol. 54, no. 1, pp. 185–193.

    Article  CAS  Google Scholar 

  28. Keene, B.J., Review of data for the surface tension of pure metals, Int. Mater. Rev., 1993, vol. 38, no. 4, pp. 157–192.

    Article  CAS  Google Scholar 

  29. Khimicheskaya entsiklopediya. V 5 tomakh (Chemical Encyclopedia in Five Volumes), Zefirov, N.S., Ed., Moscow: Sovetskaya Entsiklopediya, 1988.

  30. Fortov, V.E., Uravneniya sostoyaniya veshchestva: ot ideal’nogo gaza do kvark-glyuonnoi plazmy (Equations of State of Matter: from an Ideal Gas to a Quark–Gluon Plasma), Moscow: Fizmatlit, 2013.

  31. Zinov’ev, V.E., Teplofizicheskie svoistva metallov pri vysokikh temperaturakh (High-Temperature Thermophysical Properties of Metals), Moscow: Metallurgiya, 1989.

  32. Struktura i svoistva metallov i splavov. Teplovye svoistva metallov i splavov (Structure and Properties of Metals and Alloys: Thermal Properties of Metals and Alloys), Larikov, L.N. and Yurchenko, Yu.F., Eds., Kiev: Naukova Dumka, 1985.

    Google Scholar 

  33. Penyaz’kov, O.G., Saverchenko, V.I., Fisenko, S.P., and Khodyko, Yu.A., Low-temperature synthesis of metal oxide nanoparticles during evaporation of femtoliter drops of aqueous solutions, Phys. Solid State, 2014, vol. 84, no. 8, pp. 1196–1204.

    Google Scholar 

  34. Kharanzhevskiy, E.V., Separation in liquid and the formation of supersaturated solid solutions in Fe–Cu alloys upon rapid laser melting, Phys. Met. Metallogr., 2016, vol. 117, no. 9, pp. 889–895.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Federation Ministry of Education and Science (state research target no. 45.7 for the Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences). We acknowledge the support from the Russian Foundation for Basic Research (RFBR) (project no. 18-08-01356) and from the RFBR and Nizhny Novgorod oblast government (project no. 18-43-520039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shishulin.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishulin, A.V., Fedoseev, V.B. Effect of Initial Composition on the Liquid–Solid Phase Transition in Cr–W Alloy Nanoparticles. Inorg Mater 55, 14–18 (2019). https://doi.org/10.1134/S0020168519010138

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519010138

Keywords:

Navigation