Skip to main content
Log in

Synthesis of a TiO2 Photocatalyst for Dehydrogenative Cross-Coupling of (Hetero)Arenes

  • Published:
Inorganic Materials Aims and scope

Abstract

Nanostructured titanium dioxide (TiO2) with a particle size from 7 to 50 nm, photocatalytically active for organic reactions under illumination with visible light, has been prepared by sol–gel synthesis at different pH values of the starting solution. X-ray diffraction data demonstrate the formation of a crystalline anatase phase in an acid medium and an amorphous phase in an alkaline medium. Annealing at a temperature of 350°C for 4 h has led to a phase transition from the amorphous structure to anatase in all of the samples. The particle size has been shown to increase from 7 to 50 nm as the solution pH rises from 3 to 9. Further increasing the pH value to 10 reduces the particle size to 23 nm. Diffuse reflection spectra indicate that the band gap of the samples ranges from 2.9 to 3.4 eV and that annealing reduces it to 2.8–3.2 eV. According to comparative testing results, the efficiency of the synthesized TiO2 as a catalyst for oxidative \({\text{S}}_{{\text{N}}}^{{\text{H}}}\) cross-coupling of acridine with indole is comparable to that of the commercially available catalysts Degussa P25 and Hombifine N, as evidenced by product yields above 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Natarajan, T.S., Natarajan, K., Bajaj, H.C., and Tayade, R.J., Energy efficient UV-LED source and TiO2 nanotube array-based reactor for photocatalytic application, Ind. Eng. Chem. Res., 2011, vol. 50, no. 13, pp. 7753–7762.

    Article  CAS  Google Scholar 

  2. Volkov, A.V., Polyanskaya, V.V., Moskvina, M.A., Zezin, S.B., Dement’ev, A.I., Volynskii, A.L., and Bakeev, N.F., Structure and properties of hybrid PP/TiO2 nanocomposites and mesoporous TiO2 prepared via solvent crazing, Nanotechnol. Russ, 2012, vol. 7, no. 7, pp. 377–384.

    Article  Google Scholar 

  3. Vokhmintsev, A.S., Weinstein, I.A., Kamalov, R.V., and Dorosheva, I.B., Memristive effect in a nanotubular layer of anodized titanium dioxide, Bull. Russ. Acad. Sci.: Phys., 2014, vol. 78, no. 9, pp. 932–935.

    Article  CAS  Google Scholar 

  4. Nešić, M., Žakula, J., Korićanac, L., Stepić, M., Radoičić, M., Popović, I., Šaponjić, Z., and Petković, M., Light controlled metallo-drug delivery system based on the TiO2-nanoparticles and Ru-complex, J. Photochem. Photobiol., A, 2017, no. 347, pp. 55–66.

  5. Li, W., Bak, T., Atanacio, A., and Nowotny, J., Photocatalytic properties of TiO2: effect of niobium and oxygen activity on partial water oxidation, Appl. Catal. B, 2016, no. 198, pp. 243–253.

  6. Nam, W.S. and Han, G.Y., Characterization and photocatalytic performance of nanosize TiO2 powders prepared by the solvothermal method, Korean J. Chem. Eng., 2003, vol. 20, no. 6, pp. 1149–1153.

    Article  CAS  Google Scholar 

  7. Najafi, M., Kermanpur, A., Rahimipour, M.R., and Najafizadeh, A., Effect of TiO2 morphology on structure of TiO2–graphene oxide nanocomposite synthesized via a one-step hydrothermal method, J. Alloys Compd., 2017, no. 722, pp. 272–277.

  8. Kamalov, R., Vokhmintsev, A., Dorosheva, I., and Kravets, N., Synthesis of composite based on carbon nanotubes and anodic titania, Adv. Sci. Lett., 2016, vol. 22, no. 3, pp. 688–690.

    Article  Google Scholar 

  9. Sotelo-Vazquez, C., Quesada-Cabrera, R., Darr, J.A., and Parkin, I.P., Single-step synthesis of doped TiO2 stratified thin-films by atmospheric-pressure chemical vapour deposition, J. Mater. Chem. A, 2014, vol. 2, no. 19, pp. 7082–7087.

    Article  CAS  Google Scholar 

  10. Baran, E. and Yazici, B., Effect of different nano-structured Ag doped TiO2-NTs fabricated by electrodeposition on the electrocatalytic hydrogen production, Int. J. Hydrogen Energy, 2016, vol. 41, no. 4, pp. 2498–2511.

    Article  CAS  Google Scholar 

  11. Ibrahim, A., Mekprasart, W., and Pecharapa, W., Anatase/rutile TiO2 composite prepared via sonochemical process and their photocatalytic activity, Mater. Today: Proc., 2017, vol. 4, no. 5, pp. 6159–6165.

    Google Scholar 

  12. Maragatha, J., Rajendran, S., Endo, T., and Karuppuchamy, S., Microwave synthesis of metal doped TiO2 for photocatalytic applications, J. Mater. Sci.–Mater. Electron., 2017, vol. 28, no. 7, pp. 5281–5287.

    Article  CAS  Google Scholar 

  13. Romero-Arcos, M., Garnica-Romo, M.G., and Martínez-Flores, H.E., Electrochemical study and characterization of an amperometric biosensor based on the immobilization of laccase in a nanostructure of TiO2 synthesized by the sol–gel method, Materials, 2016, vol. 9, no. 7, pp. 543–555.

    Article  CAS  PubMed Central  Google Scholar 

  14. Dorosheva, I.B., Valeeva, A.A., and Rempel, A.A., Sol–gel synthesis of nanosized titanium dioxide at various pH of the initial solution, AIP Conf. Proc., 2017, vol. 1886, paper 020 006.

  15. Utepova, I.A., Trestsova, M.A., Chupakhin, O.N., Charushin, V.N., and Rempel, A.A., Aerobic oxidative C–H/C–H coupling of azaaromatics with indoles and pyrroles in the presence of TiO2 as a photocatalyst, Green Chem., 2015, vol. 17, pp. 4401–4410.

    Article  CAS  Google Scholar 

  16. Utepova, I.A., Chupakhin, O.N., Trestsova, M.A., Musikhina, A.A., Kucheryavaya, D.A., Charushin, V.N., Rempel, A.A., Kozhevnikova, N.S., Valeeva, A.A., Mikhaleva, A.I., and Trofimov, B.A., Direct functionalization of the C–H bond in (hetero)arenes: aerobic photoinduced oxidative coupling of azines with aromatic nucleophiles (\({\text{S}}_{{\text{N}}}^{{\text{H}}}\)-reactions) in the presence of a CdS/TiO2 photocatalyst, Russ. Chem. Bull., Int. Ed., 2016, vol. 65, pp. 445–450.

    CAS  Google Scholar 

  17. Chupakhin, O.N. and Charushin, V.N., Nucleophilic C–H functionalization of arenes: a new logic of organic synthesis, Pure Appl. Chem., 2017, vol. 89, pp. 1195–1208.

    Article  CAS  Google Scholar 

  18. Chupakhin, O.N., Shchepochkin, A.V., and Charushin, V.N., Atom- and step-economical nucleophilic arylation of azaaromatics via electrochemical oxidative cross C–C coupling reactions, Green Chem., 2017, vol. 19, pp. 2931–2935.

    Article  CAS  Google Scholar 

  19. Akue-Gedu, R., Debiton, E., Ferandin, Y., Meijer, L., Prudhomme, M., Anizon, F., and Moreau, P., Synthesis and biological activities of aminopyrimidyl-indoles structurally related to meridianins, Bioorgan. Med. Chem., 2009, vol. 17, pp. 4420–4424.

    Article  CAS  Google Scholar 

  20. Imperatore, C., Aiello, A., D’Aniello, F., Senese, M., and Menna, M., Alkaloids from marine invertebrates as important leads for anticancer drugs discovery and development, Molecules, 2014, vol. 19, pp. 20 391–20 423.

  21. Zhang, H., Wu, W., Feng, C., Liu, Z., Bai, E., Wang, X., Lei, M., Cheng, H., Feng, H., Shi, J., Wang, J., Zhang, Z., Jin, T., Chen, S., Hu, S., and Zhu, Y., Design, synthesis, SAR discussion, in vitro and in vivo evaluation of novel selective EGFR modulator to inhibit L858R/T790M double mutants, Eur. J. Med. Chem., 2017, vol. 135, pp. 12–23.

    Article  CAS  PubMed  Google Scholar 

  22. Madadi, N.R., Penthala, N.R., Janganati, V., and Crooks, P.A., Synthesis and anti-proliferative activity of aromatic substituted 5-((1-benzyl-1H-indol-3-yl)-methylene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione analogs against human tumor cell lines, Bioorgan. Med. Chem. Lett., 2014, vol. 24, pp. 601–603.

    Article  CAS  Google Scholar 

  23. Raju, P.A.G., Mallikarjunarao, R., Gopal, K.V., Sreeramulu, J., Reddy, D.M., Krishnamurthi, K.P., and Reddy, S.R., Synthesis and biological activity of some new indole derivatives containing pyrazole moiety, J. Chem. Pharm. Res., 2013, vol. 5, pp. 21–27.

    Google Scholar 

  24. Swarnkar, D., Ameta, R., and Vyas, R., Microwave-assisted synthesis, characterization and biological activity of some pyrazole derivatives, Int. Res. J. Pharm., 2014, vol. 5, pp. 459–462.

    Article  CAS  Google Scholar 

  25. Rempel, A.A., Sulfide, carbide, and oxide-based hybrid nanoparticles, Izv. Akad. Nauk, Ser. Khim., 2013, no. 4, pp. 857–869.

  26. Sasikala, R., Sudarsan, V., Sudakar, C., Naik, R., Panicker, L., and Bharadwaj, S.R., Modification of the photocatalytic properties of self doped TiO2 nanoparticles for hydrogen generation using sunlight type radiation, Int. J. Hydrogen Energy, 2009, vol. 34, pp. 6105–6113.

    Article  CAS  Google Scholar 

  27. Tryba, B., Tygielska, M., Colbeau-Justin, C., Kusiak-Nejman, E., and Kapica-Kozar, J., Wróbel, R., Żołnierkiewicz, G., and Guskos, N., Influence of pH of sol–gel solution on phase composition and photocatalytic activity of TiO2 under UV and visible light, Mater. Res. Bull., 2016, no. 84, pp. 152–161.

  28. Ganesan, N.M., Senthil, T.S., Muthukumarasamy, N., and Balasundaraprabhu, R., The role of pH on the structural properties and photocatalytic applications of TiO2 nanocrystals prepared by simple sol–gel method, Int. J. Chem. Technol. Res., 2014, vol. 6, no. 5, pp. 3078–3082.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the Russian Foundation for Basic Research (project nos. 17-03-00702 and 16-03-00958) and the Ural Branch of the Russian Academy of Sciences (project no. 18-3-3-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Dorosheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorosheva, I.B., Rempel, A.A., Trestsova, M.A. et al. Synthesis of a TiO2 Photocatalyst for Dehydrogenative Cross-Coupling of (Hetero)Arenes. Inorg Mater 55, 155–161 (2019). https://doi.org/10.1134/S0020168519010047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168519010047

Keywords:

Navigation