Skip to main content

Advertisement

Log in

Influence of substituted acetic acids on “bridge” synthesis of highly photocatalytic active heterophase TiO2 in hydrogen production

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Anatase/brookite nanoparticles were prepared by low-temperature hydrolysis and polycondensation of titanium isopropoxide in the presence of low concentrations of acetic acid substituted in the α−position with Cl, F, NH2 or OH groups. A bridging mechanism described the formation of TiO2 with heterophase junctions between anatase and brookite. Substituted acetic acids formed short Ti---X-CH2-COO---Ti bridges that held neighboring Ti species close together and facilitated their condensation and the formation of Ti-O-Ti bonds. The structure of the anatase-brookite heterophase junctions was located and fully characterized by HR-TEM. The most acidic acetic acids substituted with groups with a strongly negative inductive effect, monochloroacetic, dichloroacetic, trichloroacetic, trifluoroacetic and amino acetic acids, supported the formation of TiO2, which in cooperation with the Pt cocatalyst had photocatalytic activity, 144.6–165.6 μmol H2/min. g, in the production of hydrogen. All photocatalysts had a pronounced mesoporous structure and a large specific surface area (212.6 to 247.2 m2/g), which contributed to the high photocatalytic activity.

Graphical Abstract

Heterophase anatase-brookite photocatalysts were prepared by hydrolysis and polycondensation of titanium isoproproxide in a solution of substituted acetic acids. Bridges between substituted acetic acids and Ti atoms supported the formation of heterophase anatase-brookite junctions, which formed highly active photocatalysts in hydrogen production.

Highlights

  • Heterophase anatase-brookite nanoparticles were prepared by hydrolysis and polycondensation of titanium isopropoxide in a solution of substituted acetic acids.

  • The bridges between substituted acetic acids and Ti atoms facilitate the formation of heterophase anatase-brookite junctions.

  • Anatase-brookite heterophase junctions deposited by Pt nanoparticles formed photocatalytically active centers.

  • acetic acids substituted with Cl-, F- and NH2- groups produced highly active photocatysts in hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photoch Photobio C 11(4):179–209. https://doi.org/10.1016/j.jphotochemrev.2011.02.003

    Article  CAS  Google Scholar 

  2. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38. https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  3. Fujishima A, Honda K, Kikuchi S (1969) Photosensitized electrolytic oxidation on TiO2 semiconductor electrode. J Chem Soc Jpn 72:108–109

    CAS  Google Scholar 

  4. Cheng G, Wei Y, Xiong JY, Gan YX, Zhu JX, Xu FF (2017) Same titanium glycolate precursor but different products: successful synthesis of twinned anatase TiO2 nanocrystals with excellent solar photocatalytic hydrogen evolution capability. Inorg Chem Front 4(8):1319–1329. https://doi.org/10.1039/c7qi00278e

    Article  CAS  Google Scholar 

  5. D’Elia D, Beauger C, Hochepied JF, Rigacci A, Berger MH, Keller N, Keller-Spitzer V, Suzuki Y, Valmalette JC, Benabdesselam M, Achard P (2011) Impact of three different TiO2 morphologies on hydrogen evolution by methanol assisted water splitting: Nanoparticles, nanotubes and aerogels. Int J Hydrog Energy 36(22):14360–14373. https://doi.org/10.1016/j.ijhydene.2011.08.007

    Article  CAS  Google Scholar 

  6. Bokhimi X, Morales A, Aguilar M, Toledo-Antonio JA, Pedraza F (2001) Local order in titania polymorphs. Int J Hydrog Energy 26(12):1279–1287. https://doi.org/10.1016/S0360-3199(01)00063-5

    Article  CAS  Google Scholar 

  7. Kakihana M, Kobayashi M, Tomita K, Petrykin V (2010) Application of water-soluble titanium complexes as precursors for the synthesis of titanium-containing oxides via aqueous solution processes. B Chem Soc Jpn 83(11):1285–1308. https://doi.org/10.1246/bcsj.20100103

    Article  CAS  Google Scholar 

  8. Di Paola A, Cufalo G, Addamo M, Bellardita M, Campostrini R, Ischia M, Ceccato R, Palmisano L (2008) Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions. Colloids Surf A Physicochem Eng Asp 317(1–3):366–376. https://doi.org/10.1016/j.colsurfa.2007.11.005

    Article  CAS  Google Scholar 

  9. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep. 48(5-8):53–229. https://doi.org/10.1016/S0167-5729(02)00100-0

    Article  CAS  Google Scholar 

  10. Kumar SG, Rao KSRK (2014) Polymorphic phase transition among the titania crystal structures using a solution-based approach: from precursor chemistry to nucleation process. Nanoscale 6(20):11574–11632. https://doi.org/10.1039/c4nr01657b

    Article  CAS  Google Scholar 

  11. Kobayashi M, Petrykin V, Tomita K, Kakihana M (2008) New water-soluble complexes of titanium with amino acids and their application for synthesis of TiO2 nanoparticles. J Ceram Soc Jpn 116(1352):578–583. https://doi.org/10.2109/jcersj2.116.578

    Article  CAS  Google Scholar 

  12. Tomita K, Petrykin V, Kobayashi M, Shiro M, Yoshimura M, Kakihana M (2006) A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method. Angew Chem Int Ed 45(15):2378–2381. https://doi.org/10.1002/anie.200503565

    Article  CAS  Google Scholar 

  13. Kobayashi M (2016) Synthesis and development of titania with controlled structures. J Ceram Soc Jpn 124(9):863–869

    Article  CAS  Google Scholar 

  14. Shen X, Zhang J, Tian B, Anpo M (2012) Tartaric acid-assisted preparation and photocatalytic performance of titania nanoparticles with controllable phases of anatase and brookite. J Mater Sci 47(15):5743–5751. https://doi.org/10.1007/s10853-012-6465-4

    Article  CAS  Google Scholar 

  15. Tay QL, Liu XF, Tang YX, Jiang ZL, Sum TC, Chen Z (2013) Enhanced photocatalytic hydrogen production with synergistic two-phase Anatase/Brookite TiO2 nanostructures. J Phys Chem C 117(29):14973–14982. https://doi.org/10.1021/jp4040979

    Article  CAS  Google Scholar 

  16. Froschl T, Hormann U, Kubiak P, Kucerova G, Pfanzelt M, Weiss CK, Behm RJ, Husing N, Kaiser U, Landfester K, Wohlfahrt-Mehrens M (2012) High surface area crystalline titanium dioxide: potential and limits in electrochemical energy storage and catalysis. Chem Soc Rev 41(15):5313–5360. https://doi.org/10.1039/c2cs35013k

    Article  CAS  Google Scholar 

  17. El -Sheikh SM, Khedr TM, Hakki A, Ismail AA, Badawy WA, Bahnemann DW (2017) Visible light activated carbon and co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen. Sep Purif Technol 173:258–268. https://doi.org/10.1016/j.seppur.2016.09.034

    Article  CAS  Google Scholar 

  18. Cihlar J, Kasparek V, Kralova M, Castkova K (2015) Biphasic anatase-brookite nanoparticles prepared by sol-gel complex synthesis and their photocatalytic activity in hydrogen production. Int J Hydrog Energy 40(7):2950–2962. https://doi.org/10.1016/j.ijhydene.2015.01.008

    Article  CAS  Google Scholar 

  19. Buonsanti R, Grillo V, Carlino E, Giannini C, Kipp T, Cingolani R, Cozzoli PD (2008) Nonhydrolytic synthesis of high-quality anisotropically shaped Brookite TiO2 Nanocrystals. J Am Chem Soc 130(33):11223–11233. https://doi.org/10.1021/ja803559b

    Article  CAS  Google Scholar 

  20. Liu SH, Bai SQ, Zheng YG, Shah KW, Han MY (2012) Composite metal-oxide nanocatalysts. Chemcatchem 4(10):1462–1484. https://doi.org/10.1002/cctc.201200264

    Article  CAS  Google Scholar 

  21. Cihlar J, Navarro LKT, Kasparek V, Michalicka J, Cihlar J, Kastyl J, Castkova K, Celko L (2021) Influence of LA/Ti molar ratio on the complex synthesis of anatase/brookite nanoparticles and their hydrogen production. Int J Hydrog Energy 46(12):8578–8593. https://doi.org/10.1016/j.ijhydene.2020.12.080

    Article  CAS  Google Scholar 

  22. Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor. J Phys Chem 99(45):16646–16654. https://doi.org/10.1021/j100045a026

    Article  CAS  Google Scholar 

  23. Alcaraz de la Osa R, Iparragirre I, Ortiz D, Saiz JM (2019) The extended Kubelka–Munk theory and its application to spectroscopy. ChemTexts 6(1):2. https://doi.org/10.1007/s40828-019-0097-0

    Article  Google Scholar 

  24. Cihlar Jr. J, Bartonickova E, Cihlar J (2013) Low-temperature sol–gel synthesis of anatase nanoparticles modified by Au, Pd and Pt and activity of TiO2/Au, Pd, Pt photocatalysts in water splitting. J Sol-Gel Sci Technol 65(3):430–442. https://doi.org/10.1007/s10971-012-2955-8

    Article  CAS  Google Scholar 

  25. Melián EP, López CR, Méndez AO, Díaz OG, Suárez MN, Doña Rodríguez JM, Navío JA, Fernández Hevia D (2013) Hydrogen production using Pt-loaded TiO2 photocatalysts. Int J Hydrog Energy 38(27):11737–11748. https://doi.org/10.1016/j.ijhydene.2013.07.006

    Article  CAS  Google Scholar 

  26. Doeuff SH M, Sanchez C, Livage J (1987) Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid. J Non-Cryst Solids 89:206–216

    Article  Google Scholar 

  27. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18(4):259–341. https://doi.org/10.1016/0079-6786(88)90005-2

    Article  CAS  Google Scholar 

  28. Brinker CJ, Schere, GW (1990) Sol-gel science:the physics and chemistry of sol-gel processing. Academic Press, Inc., San Diego

  29. Venz PA, Frost RL, Kloprogge JT (2000) Chemical properties of modified titania hydrolysates. J Non-Cryst Solids 276(1–3):95–112. https://doi.org/10.1016/S0022-3093(00)00267-2

    Article  CAS  Google Scholar 

  30. Venz PA, Kloprogge JT, Frost RL (2000) Chemically modified titania hydrolysates: physical properties. Langmuir 16(11):4962–4968. https://doi.org/10.1021/la990830u

    Article  CAS  Google Scholar 

  31. Ignatyev IS, Montejo M, González JJL (2010) Theoretical study of the mechanisms of the hydrolysis and condensation reactions of silicon and titanium alkoxides: similarities and differences. Dalton T 39(30):6967–6973. https://doi.org/10.1039/C002397C

    Article  CAS  Google Scholar 

  32. Cheng X, Chen D, Liu Y (2012) Mechanisms of silicon alkoxide Hydrolysis–Oligomerization reactions: A DFT investigation. Chemphyschem 13(9):2392–2404. https://doi.org/10.1002/cphc.201200115

    Article  CAS  Google Scholar 

  33. Zhang H, Chen B, Banfield JF, Waychunas GA (2008) Atomic structure of nanometer-sized amorphous TiO2. Phys Rev B 78(21):214106. https://doi.org/10.1103/PhysRevB.78.214106

    Article  CAS  Google Scholar 

  34. Petkov V, Holzhüter G, Tröge U, Gerber T, Himmel B (1998) Atomic-scale structure of amorphous TiO2 by electron, X-ray diffraction and reverse Monte Carlo simulations. J Non-Cryst Solids 231(1):17–30. https://doi.org/10.1016/S0022-3093(98)00418-9

    Article  CAS  Google Scholar 

  35. Ojamäe L, Aulin C, Pedersen H, Käll PO (2006) IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles. J Colloid Interface Sci 296(1):71–78

    Article  Google Scholar 

  36. Pantaleone S, Rimola A, Sodupe M (2017) Canonical, deprotonated or zwitterionic? A computational study on amino acid interaction with the TiO2 (101) anatase surface. J Phys Chem C 121. https://doi.org/10.1021/acs.jpcc.7b03305

  37. Pantaleone S, Rimola A, Sodupe M (2020) Canonical, deprotonated, or zwitterionic? II. A computational study on amino acid interaction with the TiO2 (110) rutile surface: comparison with the anatase (101) surface. Phys Chem Chem Phys 22(29):16862–16876. https://doi.org/10.1039/D0CP01429J

    Article  CAS  Google Scholar 

  38. Liu L, Li K, Chen X, Liang X, Zheng YZ, Li L (2018) Amino acid adsorption on anatase (101) surface at vacuum and aqueous solution: a density functional study. J Mol Model 24:1–9

    Article  Google Scholar 

  39. Xue X, Huang Y, Zhuang Z, Huang F, Lin Z (2013) Temperature-sensitive growth kinetics and photoluminescence properties of CdS quantum dots. Crystengcomm 15(24):4963–4969. https://doi.org/10.1039/C3CE40478A

    Article  CAS  Google Scholar 

  40. Xue X, Penn RL, Leite ER, Huang F, Lin Z (2014) Crystal growth by oriented attachment: kinetic models and control factors. Crystengcomm 16(8):1419–1429. https://doi.org/10.1039/C3CE42129E

    Article  CAS  Google Scholar 

  41. Dalmaschio CJ, Ribeiro C, Leite ER (2010) Impact of the colloidal state on the oriented attachment growth mechanism. Nanoscale 2(11):2336–2345. https://doi.org/10.1039/C0NR00338G

    Article  CAS  Google Scholar 

  42. Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MH (2014) Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A 2(3):637–644

    Article  CAS  Google Scholar 

  43. Kalaivani T, Anilkumar P (2018) Role of temperature on the phase modification of TiO2 nanoparticles synthesized by the precipitation method. Silicon 10(4):1679–1686. https://doi.org/10.1007/s12633-017-9652-8

    Article  CAS  Google Scholar 

  44. Huang GZ, Zhang J, Jiang F, Zhang Z, Zeng JH, Qi X, Shen ZJ, Wang HB, Kong Z, Xi JH, Ji ZG (2020) Excellent photoelectrochemical activity of Bi2S3 nanorod/TiO2 nanoplate composites with dominant {001} facets. J Sol State Chem 281. https://doi.org/10.1016/j.jssc.2019.121041

  45. Bharti B, Kumar S, Lee H-N, Kumar R (2016) Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci Rep-Uk 6(1):32355. https://doi.org/10.1038/srep32355

    Article  CAS  Google Scholar 

  46. Lv C, Lan X, Li F, Wang L, Xiao L, Wang C, Shi J, Yu S (2020) A facile acid treatment for P25 modification with enhanced photocatalytic H2 evolution – effect of Brønsted acid sites and oxygen vacancies. Catal Sci Technol 10(3):690–699. https://doi.org/10.1039/C9CY02166C

    Article  CAS  Google Scholar 

  47. Huang GC, Liu XY, Shi SR, Li ST, Xiao ZT, Zhen WQ, Liu SW, Wong PK (2020) Hydrogen producing water treatment through mesoporous TiO2 nanofibers with oriented nanocrystals. Chin J Catal 41(1):50–61. https://doi.org/10.1016/S1872-2067(19)63424-8

    Article  CAS  Google Scholar 

  48. Li X, Liu CY, Wu DY, Li JZ, Huo PW, Wang HQ (2019) Improved charge transfer by size-dependent plasmonic Au on C3N4 for efficient photocatalytic oxidation of RhB and CO2 reduction. Chin J Catal 40(6):928–939. https://doi.org/10.1016/S1872-2067(19)63347-4

    Article  CAS  Google Scholar 

  49. Khedr TM, El-Sheikh SM, Hakki A, Ismail AA, Badawy WA, Bahnemann DW (2017) Highly active non-metals doped mixed-phase TiO2 for photocatalytic oxidation of ibuprofen under visible light. J Photochem Photobio A 346:530–540. https://doi.org/10.1016/j.jphotochem.2017.07.004

    Article  CAS  Google Scholar 

  50. Hariharan D, Christy AJ, Mayandi J, Nehru LC (2018) Visible light active photocatalyst: Hydrothermal green synthesized TiO2 NPs for degradation of picric acid. Mater Lett 222:45–49. https://doi.org/10.1016/j.matlet.2018.03.109

    Article  CAS  Google Scholar 

  51. Chattopadhyay S, Mishra MK, De G (2016) Functionalized C@TiO2 hollow spherical architecture for multifunctional applications. Dalton T 45(12):5111–5121. https://doi.org/10.1039/c5dt05011a

    Article  CAS  Google Scholar 

  52. Wang DT, Li X, Chen JF, Tao X (2012) Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation. Chem Eng J 198:547–554. https://doi.org/10.1016/j.cej.2012.04.062

    Article  CAS  Google Scholar 

  53. Elmouwahidi A, Bailon-Garcia E, Castelo-Quiben J, Perez-Cadenas AF, Maldonado-Hodar FJ, Carrasco-Marin F (2018) Carbon-TiO2 composites as high-performance supercapacitor electrodes: synergistic effect between carbon and metal oxide phases. J Mater Chem A 6(2):633–644. https://doi.org/10.1039/c7ta08023a

    Article  CAS  Google Scholar 

  54. Lee ASH, Li K, Zhang YW, Sha ZD, Pan H (2014) Ab initio study on the effects of dopant-defect cluster on the electronic properties of TiO2-based photocatalysts. Int J Hydrog Energy 39(5):2049–2055. https://doi.org/10.1016/j.ijhydene.2013.11.090

    Article  CAS  Google Scholar 

  55. Tay Q, Chen Z (2016) Effective charge separation towards enhanced photocatalytic activity via compositing reduced graphene oxide with two-phase anatase/brookite TiO2. Int J Hydrog Energy 41(25):10590–10597. https://doi.org/10.1016/j.ijhydene.2016.04.022

    Article  CAS  Google Scholar 

  56. Zhang Z, Maggard PA (2007) Investigation of photocatalytically-active hydrated forms of amorphous titania, TiO2·nH2O. J Photochem Photobio A: Chem 186(1):8–13. https://doi.org/10.1016/j.jphotochem.2006.07.004

    Article  CAS  Google Scholar 

  57. Hao R, Jiang BJ, Li MX, Xie Y, Fu HG (2015) Fabrication of mixed-crystalline-phase spindle-like TiO2 for enhanced photocatalytic hydrogen production. Sci China Mater 58(5):363–369. https://doi.org/10.1007/s40843-015-0052-3

    Article  CAS  Google Scholar 

  58. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9-10):1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  59. Liao Y, Que W, Jia Q, He Y, Zhang J, Zhong P (2012) Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods array. J Mater Chem 22(16):7937–7944. https://doi.org/10.1039/C2JM16628C

    Article  CAS  Google Scholar 

  60. Beltram A, Romero-Ocana I, Jaen JJD, Montini T, Fornasiero P (2016) Photocatalytic valorization of ethanol and glycerol over TiO2 polymorphs for sustainable hydrogen production. Appl Catal A Gen 518:167–175. https://doi.org/10.1016/j.apcata.2015.09.022

    Article  CAS  Google Scholar 

  61. Khedr TM, El-Sheikh SM, Ismail AA, Bahneman DW (2019) Highly efficient solar light-assisted TiO2 nanocrystalline for photodegradation of ibuprofen drug. Opt Mater 88:117–127. https://doi.org/10.1016/j.optmat.2018.11.027

    Article  CAS  Google Scholar 

  62. Kurnaravel V, Mathew S, Bartlett J, Pillai SC (2019) Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Appl Catal B:Environ 244:1021–1064. https://doi.org/10.1016/j.apcatb.2018.11.080

    Article  CAS  Google Scholar 

  63. Rosseler O, Shankar MV, Du MK-L, Schmidlin L, Keller N, Keller V (2010) Solar light photocatalytic hydrogen production from water over Pt and Au/TiO2(anatase/rutile) photocatalysts: Influence of noble metal and porogen promotion. J Catal 269(1):179–190. https://doi.org/10.1016/j.jcat.2009.11.006

    Article  CAS  Google Scholar 

  64. Reichert R, Jusys Z, Behm RJ (2015) Au/TiO2 Photo(electro)catalysis: the role of the au cocatalyst in photoelectrochemical water splitting and photocatalytic H2 evolution. J Phys Chem C 119(44):24750–24759. https://doi.org/10.1021/acs.jpcc.5b08428

    Article  CAS  Google Scholar 

  65. Chen W-T, Chan A, Al-Azri ZHN, Dosado AG, Nadeem MA, Sun-Waterhouse D, Idriss H, Waterhouse GIN (2015) Effect of TiO2 polymorph and alcohol sacrificial agent on the activity of Au/TiO2 photocatalysts for H2 production in alcohol–water mixtures. J Catal 329:499–513. https://doi.org/10.1016/j.jcat.2015.06.014

    Article  CAS  Google Scholar 

  66. Panagiotopoulou P, Karamerou EE, Kondarides DI (2013) Kinetics and mechanism of glycerol photo-oxidation and photo-reforming reactions in aqueous TiO2 and Pt/TiO2 suspensions. Catal 209:91–98. https://doi.org/10.1016/j.cattod.2012.09.029

    Article  CAS  Google Scholar 

  67. Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev 257(1):171–186. https://doi.org/10.1016/j.ccr.2012.04.018

    Article  CAS  Google Scholar 

  68. Walenta CA, Courtois C, Kollmannsberger SL, Eder M, Tschurl M, Heiz U (2020) Surface species in photocatalytic methanol reforming on Pt/TiO2(110): learning from surface science experiments for catalytically relevant conditions. Acs Catal 10(7):4080–4091

    Article  CAS  Google Scholar 

  69. Tay Q, Liu X, Tang Y, Jiang Z, Sum TC, Chen Z (2013) Enhanced photocatalytic hydrogen production with synergistic two-phase anatase/brookite TiO2 nanostructures. J Phys Chem C 117(29):14973–14982. https://doi.org/10.1021/jp4040979

    Article  CAS  Google Scholar 

  70. Kandiel TA, Feldhoff A, Robben L, Dillert R, Bahnemann DW (2010) Tailored titanium dioxide nanomaterials: anatase nanoparticles and brookite nanorods as highly active photocatalysts. Chem Mater 22(6):2050–2060. https://doi.org/10.1021/cm903472p

    Article  CAS  Google Scholar 

  71. Ocana IR, Beltram A, Jaen JJD, Adami G, Montini T, Fornasiero P (2015) Photocatalytic H-2 production by ethanol photodehydrogenation: Effect of anatase/brookite nanocomposites composition. Inorg Chim Acta 431:197–205. https://doi.org/10.1016/j.ica.2015.01.033

    Article  CAS  Google Scholar 

  72. Preethi LK, Antony RP, Mathews T, Walczak L, Gopinath CS (2017) A study on doped heterojunctions in TiO2 Nanotubes: an efficient photocatalyst for solar water splitting. Sci Rep-Uk 7. ARTN 14314 https://doi.org/10.1038/s41598-017-14463-0

  73. Preethi LK, Mathews T, Nand M, Jha SN, Gopinath CS, Dash S (2017) Band alignment and charge transfer pathway in three phase anatase-rutile-brookite TiO2 nanotubes: An efficient photocatalyst for water splitting. Appl Catal B:Environ 218:9–19. https://doi.org/10.1016/j.apcatb.2017.06.033

    Article  CAS  Google Scholar 

  74. Wang YL, Zhang W, Wang ZH, Cao YM, Feng JM, Wang ZL, Ma Y (2018) Fabrication of TiO2(B)/anatase heterophase junctions in nanowires via a surface-preferred phase transformation process for enhanced photocatalytic activity. Chin J Catal 39(9):1500–1510. https://doi.org/10.1016/S1872-2067(18)63096-7

    Article  CAS  Google Scholar 

  75. Xiong HL, Wu LL, Liu Y, Gao TN, Li KQO, Long Y, Zhang R, Zhang L, Qiao ZA, Huo QS, Ge X, Song SY, Zhang HJ (2019) Controllable synthesis of mesoporous TiO2 polymorphs with tunable crystal structure for enhanced photocatalytic H-2 production. Adv Energy Mater 9 (31). ARTN 1901634 https://doi.org/10.1002/aenm.201901634

Download references

Acknowledgements

The work was carried out in the frame of the COST Action CA18125 “Advanced Engineering and Research of aeroGels for Environment and Life Sciences” (AERoGELS) and funded by the European Commission. The authors acknowledge the support of the Ministry of Education, Youth and Sports of the Czech Republic under grant no. LTC20019. We also acknowledge CzechNanoLab Research Infrastructure supported by MEYS CR (project LM2018110).

Funding

This work was supported by Ministry of Education, Youth and Sports of the Czech Republic under Grant numbers LTC20019.

Author information

Authors and Affiliations

Authors

Contributions

(CRediT author statement) All authors contributed to the study conception and design. JC: conceptualization, supervision, methodology, investigation, writing - original draft. KTN: investigation, visualization. JC: visualization, investigation, formal analysis. VK: investigation. JM: formal analysis, writing - original draft. KC: project administration, validation, writing - review & editing. IL: writing - original draft, writing - review & editing. JK: formal analysis, writing - original draft. LC: resources, validation. MV: resources, funding acquisition. PD: resources, funding acquisition. The first draft of the manuscript was written by JC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jaroslav Cihlar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cihlar, J., Navarro, L.K.T., Cihlar, J. et al. Influence of substituted acetic acids on “bridge” synthesis of highly photocatalytic active heterophase TiO2 in hydrogen production. J Sol-Gel Sci Technol 105, 471–488 (2023). https://doi.org/10.1007/s10971-022-06011-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-06011-8

Keywords

Navigation