Skip to main content
Log in

Synthesis of Substituted Octacalcium Phosphate for Filling Composite Implants Based on Polymer Hydrogels Produced by Stereolithographic 3D Printing

  • Published:
Inorganic Materials Aims and scope

Abstract

Based on theoretical and experimental analysis of ionic equilibria in buffer solutions, we have found conditions for octacalcium phosphate (OCP), Ca8(HPO4)2(PO4)4 ∙ 5H2O, synthesis. Succinate-substituted OCP, Ca8(HPO4)2–хSucx(PO4)4 ∙ 5H2O, with x = 0.8–0.9 has been synthesized at pH 5.5 and t = 60°C in 3 h via α-TCP hydrolysis in a 0.25 M succinic buffer solution. The synthesis product is more stable to thermolysis than is pure OCP: the apatite-like product is stable up to 630°C. The succinate@OCP powder has been used as a filler for poly(ethylene glycol)diacrylate-based hydrogel in producing a composite implant by stereolithographic 3D printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Porter, J.R., Ruckh, T.T., and Popat, K.C., Bone tissue engineering: a review in bone biomimetics and drug delivery strategies, Am. Inst. Chem. Eng. Biotechnol. Prog., 2009, vol. 25, pp. 1539–1560.

    CAS  Google Scholar 

  2. Ievlev, V.M., Putlyaev, V.I., Safronova, T.V., and Evdokimov, P.V., Additive technologies for making highly permeable inorganic materials with tailored morphological architectonics for medicine, Inorg. Mater., 2015, vol. 51, no. 13, pp. 1295–1313.

    Article  CAS  Google Scholar 

  3. Sivashanmugam, A., Arun Kumar, R., Vishnu Priya, M., Nair, S.V., and Jayakumar, R., An overview of injectable polymeric hydrogels for tissue engineering, Eur. Polym. J., 2015, vol. 72, pp. 543–565.

    CAS  Google Scholar 

  4. Suzuki, O., Octacalcium phosphate (OCP)–based bone substitute materials, Jpn. Dental Sci. Rev., 2013, vol. 49, no. 2, pp. 58–71.

    Article  Google Scholar 

  5. Barinov, S.M., Calcium phosphate–based ceramic and composite materials for medical applications, Usp. Khim., 2010, vol. 79, no. 1, pp. 15–32.

    Article  CAS  Google Scholar 

  6. Gurin, A.N., Komlev, V.S., Fadeeva, I.N., and Barinov, S.M., Octacalcium phosphate: a precursor for biomineralization and promising osteoplastic material, Stomatologiya, 2010, no. 4, pp. 65–72.

    Google Scholar 

  7. Suzuki, O., Octacalcium phosphate: osteoconductivity and crystal chemistry, Acta Biomater., 2010, vol. 6, no. 9, pp. 3379–3387.

    Article  CAS  PubMed  Google Scholar 

  8. Monma, H. and Goto, M., Complexes of apatitic layered compound Ca8(HPO4)2(PO4)4 ∙ 5H2O with dicarboxylates, J. Inclusion Phenom., 1984, vol. 2, nos. 1–2, pp. 127–134.

    Article  CAS  Google Scholar 

  9. Markovic, M., Fowler, B.O., and Brown, W.E., Octacalcium phosphate carboxylates: IV. Kinetics of formation and solubility of octacalcium phosphate succinate, J. Cryst. Growth, 1994, vol. 135, nos. 3–4, pp. 533–538.

    Article  CAS  Google Scholar 

  10. Sakamoto, K., Yamaguchi, S., Kaneno, M., Fujihara, I., Satoh, K., and Tsunawaki, Y., Synthesis and thermal decomposition of layered calcium phosphates including carboxylate ions, Thin Solid Films, 2008, vol. 517, no. 4, pp. 1354–1357.

    Article  CAS  Google Scholar 

  11. Yokoi, T., Kamitakahara, M., and Ohtsuki, C., Continuous expansion of the interplanar spacing of octacalcium phosphate by incorporation of dicarboxylate ions with a side chain, Dalton Trans., 2015, vol. 44, no. 17, pp. 7943–7950.

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka, H., Watanabe, T., Chikazawa, M., Kandori, K., and Ishikawa, T., Formation and structure of calcium alkyl phosphates, Colloids Surf., A, 1998, vol. 139, no. 3, pp. 341–349.

    Article  Google Scholar 

  13. Tanaka, H. and Ihata, D., Phase transformation of calcium phenyl phosphate in calcium hydroxyapatite using alkaline phosphatase at body temperature, Mater. Res. Bull., 2010, vol. 45, no. 2, pp. 103–108.

    Article  CAS  Google Scholar 

  14. Ravoo, B.J. and Engberts, J.B.F.N., Single–tail phosphates containing branched alkyl chains. Synthesis and aggregation in water of a novel class of vesicle–forming surfactants, Langmuir, 1994, vol. 10, no. 14, pp. 1735–1740.

    Article  CAS  Google Scholar 

  15. Kukueva, E.V., Putlyaev, V.I., Tikhonov, A.A., and Safronova, T.V., Octacalcium phosphate as a precursor for the synthesis of composite bioceramics, Inorg. Mater., 2017, vol. 53, no. 2, pp. 212–219.

    Article  CAS  Google Scholar 

  16. Davis, B.L., “Standardless” X–ray diffraction quantitative analysis, Atmos. Environ. (1967–1989), 1980, vol. 14, no. 2, pp. 217–220.

    Article  CAS  Google Scholar 

  17. Raynaud, S., Champion, E., Bernache–Assollant, D., and Laval, J., Determination of calcium/phosphorus atomic ratio of calcium phosphate apatites using X–ray diffractometry, J. Am. Ceram. Soc., 2001, vol. 84, no. 2, pp. 359–366.

    Article  CAS  Google Scholar 

  18. Puigdomenech, I., Windows Software for the Graphical Presentation of Chemical Speciation, 219th ACS Natl. Meet., San Francisco: Am. Chem. Soc., 2000, Abstract I&EC–248. www.kth.se/che/medusa/.

    Google Scholar 

  19. Gustafsson, J.P., Visual MINTEQ Version 3.1, Stockholm: Department of Sustainable Development, Environmental Science and Engineering, KTH, 2013. https://vminteq.lwr.kth.se/.

    Google Scholar 

  20. Jacobs, P.F., Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography, Deaborn: Society of Manufacturing Engineers Publishers, 1992.

    Google Scholar 

  21. Boanini, E., Gazzano, M., Rubini, K., and Bigi, A., Collapsed octacalcium phosphate stabilized by ionic substitutions, Cryst. Growth Des., 2010, vol. 10, pp. 3612–3617.

    Article  CAS  Google Scholar 

  22. Markoviec, M., Fowler, J.B., and Brown, W.E., Octacalcium phosphate carboxylates. 1. Preparation and identification, Chem. Mater., 1993, vol. 5, no. 10, pp. 1401–1405.

    Article  Google Scholar 

  23. Davies, E., Müller, K.H., Wong, W.C., Pickard, C.J., Reid, D.G., Skepper, J.N., and Duer, M.J., Citrate bridges between mineral platelets in bone, Proc. Natl. Acad. Sci. USA, 2014, vol. 111, no. 14, pp. 1354–1363.

    Article  CAS  Google Scholar 

  24. Yokoi, T., Kato, H., Kim., I.Y., Kikuta, K., Kamitakahara, M., Kawashita, M., and Ohtsuki, C., Formation of octacalcium phosphates with Co–incorporated succinate and suberate ions, Dalton Trans., 2012, vol. 41, no. 9, pp. 2732–2737.

    Article  CAS  PubMed  Google Scholar 

  25. Putlyaev, V.I., Kukueva, E.V., Safronova, T.V., Ivanov, V.K., and Churagulov, B.R., Features of octacalcium phosphate thermolysis, Refract. Ind. Ceram., 2014, vol. 54, no. 5, pp. 420–424.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Putlyaev.

Additional information

Original Russian Text © A.A. Tikhonov, E.V. Kukueva, P.V. Evdokimov, E.S. Klimashina, V.I. Putlyaev, I.M. Shcherbakov, V.E. Dubrov, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 10, pp. 1123–1132.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, A.A., Kukueva, E.V., Evdokimov, P.V. et al. Synthesis of Substituted Octacalcium Phosphate for Filling Composite Implants Based on Polymer Hydrogels Produced by Stereolithographic 3D Printing. Inorg Mater 54, 1062–1070 (2018). https://doi.org/10.1134/S0020168518100175

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518100175

Keywords

Navigation