Skip to main content
Log in

Highly Oxygen-Permeable NiV2O6–25 wt % V2O5 Molten-Oxide Membrane Material

  • Published:
Inorganic Materials Aims and scope

Abstract

A NiV2O6–25 wt % V2O5 molten-oxide material has been prepared and characterized, and its transport properties (electrical conductivity, oxygen ion transport number, and oxygen permeability) have been studied in the temperature range 680–700°C. The results demonstrate that the molten-oxide membrane material obtained possesses high selective oxygen permeability (KO2 = (2.5–5.6) × 10–10 mol/(cm s) in the range 680–740°C and \(\frac{{{j_{{O_2}}}}}{{{j_{{N_2}}}}}\) ~ 1500) and can be used in separators for the preparation of extrapure oxygen from air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sunarso, J., Baumann, S., Serra, J.M., Meulenberg, W.A., Liu, S., Lin, Y.S., and Diniz da Costa, J.C., Mixed ionic–electronic conducting (MIEC) ceramic–based membranes for oxygen separation, J. Membr. Sci., 2008, vol. 320, pp. 13–41.

    Article  CAS  Google Scholar 

  2. Zeng, P., Chen, Z., Zhou, W., Gu, H., Shao, Z., and Liu, S., Re–evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3–δ perovskite as oxygen semi–permeable membrane, J. Membr. Sci., 2007, vol. 291, pp. 148–156.

    Article  CAS  Google Scholar 

  3. Teraoka, Y., Zhang, H.M., Furukawa, S., and Yamazoe, N., Oxygen permeation through perovskite–type oxides, Chem. Lett., 1985, no. 11, pp. 1743–1746.

    Article  Google Scholar 

  4. Ullmann, H., Trofimenko, N., Tietz, F., Stover, D., and Ahmad–Khanlou, A., Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite–type oxides for SOFC cathodes, Solid State Ionics, 2000, vol. 138, pp. 79–90.

    Article  CAS  Google Scholar 

  5. Liu, Y., Zhu, X., Li, M., Liu, H., Cong, Y., and Yang, W., Stabilization of low–temperature degradation in mixed ionic and electronic conducting perovskite oxygen permeation membranes, Angew. Chem., Int. Ed., 2013, vol. 52, pp. 3232–3236.

    Article  CAS  Google Scholar 

  6. Zhu, X. and Yang, W., Mixed Conducting Ceramic Membranes: Fundamentals, Materials and Applications, Berlin: Springer, 2017.

    Book  Google Scholar 

  7. Belousov, V.V. and Fedorov, S.V., Accelerated mass transfer involving the liquid phase in solids, Russ. Chem. Rev., 2012, vol. 81, pp. 44–64.

    Article  CAS  Google Scholar 

  8. Belousov, V.V., Electrical and mass transport processes in molten oxide membranes, Ionics, 2016, vol. 22, pp. 451–469.

    Article  CAS  Google Scholar 

  9. Belousov, V.V., Innovative oxide materials for electrochemical energy conversion and oxygen separation, Russ. Chem. Rev., 2017, vol. 86, pp. 934–950.

    Article  CAS  Google Scholar 

  10. Belousov, V.V., Next–generation electrochemical energy materials for intermediate temperature molten oxide fuel cells and ion transport molten oxide membranes, Acc. Chem. Res., 2017, vol. 50, pp. 273–280.

    Article  CAS  PubMed  Google Scholar 

  11. Belousov, V.V., Kulbakin, I.V., Fedorov, S.V., and Klimashin, A.A., Novel molten oxide membrane for ultrahigh purity oxygen separation from air, ACS Appl. Mater. Interfaces, 2016, vol. 34, pp. 22 324–22 329.

    Article  CAS  Google Scholar 

  12. Klimashin, A.A. and Belousov, V.V., Oxygen ion transport in molten oxide membranes for air separation and energy conversion, J. Electrochem. Soc., 2017, vol. 164, pp. H5353–H5356.

    Google Scholar 

  13. Belousov, V.V., Fedorov, S.V., and Vorobiev, A.V., The oxygen permeation of solid/melt composite BiVO4–10 wt % V2O5 membrane, J. Electrochem. Soc., 2011, vol. 158, pp. B601–B604.

    Article  CAS  Google Scholar 

  14. Kul’bakin, I.V., Fedorov, S.V., Vorob’ev, A.V., and Belousov, V.V., Transport properties of ZrV2O7–V2O5 composites with liquid–channel grain boundary structure, Russ. J. Electrochem., 2013, vol. 49, pp. 878–882.

    Article  CAS  Google Scholar 

  15. Vinke, I.C., Diepgrond, J., Boukamp, B.A., de Vries, K.J., and Burggraaf, A.J., Bulk and electrochemical properties of BiVO4, Solid State Ionics, 1992, vol. 57, pp. 83–89.

    Article  CAS  Google Scholar 

  16. Buchanan, R.C. and Wolter, G.W., Properties of hotpressed zirconium pyrovanadate ceramics, J. Electrochem. Soc., 1983, vol. 130, pp. 1905–1910.

    Article  CAS  Google Scholar 

  17. Palanna, O.G., Shashi, Mohan A.L., and Biswas, A.B., Electrical and magnetic properties of 3d–transition metal vanadates, Proc. Indian Acad. Sci. A, 1977, vol. 86, pp. 455–463.

    Google Scholar 

  18. Kozhevnikov, V.L., Kotik, M.L., Cheshnitskii, S.M., Zolotukhina, L.V., Surat, L.L., Sirina, T.P., and Fotiev, A.A., Phase relationships in the NiO–V2O5 system, Russ. J. Inorg. Chem., 1987, vol. 32, pp. 1358–1360.

    Google Scholar 

  19. Fedorov, S.V., Belousov, V.V., and Vorobiev, A.V., Transport properties of BiVO4–V2O5 liquid–channel grain–boundary structures, J. Electrochem. Soc., 2008, vol. 155, pp. F241–F244.

    Google Scholar 

  20. Ruiz–Trejo, E., Boldrin, P., Lubin, A., Tariq, F., Fearn, S., Chater, R., Cook, S.N., Atkinson, A., Gruar, R.I., Tighe, C.J., Darr, J., and Brandon, N.P., Novel composite cermet for low–metal–content oxygen separation membranes, Chem. Mater., 2014, vol. 26, pp. 3887–3895.

    Article  CAS  Google Scholar 

  21. Ten Elshof, J.E., Nguyen, N.Q., den Otter, M.W., and Bouwmeester, H.J.M., Oxygen permeation properties of dense Bi1.5Er0.5O3–Ag cermet membranes, J. Electrochem. Soc., 1997, vol. 144, pp. 4361–4366.

    Google Scholar 

  22. Kharton, V.V., Kovalevsky, A.V., Viskup, A.P., Figueiredo, F.M., Yaremchenko, A.A., Naumovich, E.N., and Marques, F.M.B., Oxygen permeability and Faradaic efficiency of Ce0.8Gd0.2O2–δ–La0.7Sr0.3MnO3–δ composites, J. Eur. Ceram. Soc., 2001, vol. 21, pp. 1763–1767.

    Article  CAS  Google Scholar 

  23. Allersma, T., Hakim, R., Kennedy, T.N., and Mackenzie J.D. Structure and physical properties of solid and liquid vanadium pentoxide, J. Chem. Phys., 1967, vol. 46, pp. 154–160.

    Article  CAS  Google Scholar 

  24. Pantony, D.A. and Vasu, K.I., Studies in the corrosion of metals under melts–II: relevant physico–chemical properties of molten vanadium pentoxide, J. Inorg. Nucl. Chem., 1968, vol. 30, pp. 433–455.

    Article  CAS  Google Scholar 

  25. Kerby, R.C. and Wilson, J.R., Electrical conduction properties of liquid vanadates. I. Vanadium pentoxide, Can. J. Chem., 1972, vol. 50, pp. 2865–2870.

    Article  CAS  Google Scholar 

  26. Wagner, C., Beitrag zur Theorie des Anlaufvorgangs, Z. Phys. Chem., 1933, vol. 21, pp. 25–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kulbakin.

Additional information

Original Russian Text © I.V. Kulbakin, A.A. Solovieva, S.V. Fedorov, V.V. Artemov, V.V. Belousov, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 10, pp. 1116–1122.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulbakin, I.V., Solovieva, A.A., Fedorov, S.V. et al. Highly Oxygen-Permeable NiV2O6–25 wt % V2O5 Molten-Oxide Membrane Material. Inorg Mater 54, 1055–1061 (2018). https://doi.org/10.1134/S0020168518100114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518100114

Keywords

Navigation