Skip to main content
Log in

Electrical Conductivity and Electrochemical Characteristics of Na3V2(PO4)3-Based NASICON-Type Materials

  • Published:
Inorganic Materials Aims and scope

Abstract

NASICON-type materials with the compositions Na3V2–xAlx(PO4)3, Na3V2 - xFex(PO4)3, Na3 + xV2–xNix(PO4)3, and Na3V2 - xCrx(PO4)3 (x = 0, 0.03, 0.05, and 0.1) have been prepared and characterized by X-ray diffraction analysis, electron microscopy, and impedance spectroscopy. The results demonstrate that the highest electrical conductivity among the samples studied is offered by the material doped with 5% Fe: Na3V1.9Fe0.1(PO4)3. The activation energy for low-temperature conduction in the doped materials decreases from 84 ± 2 to 54 ± 1 kJ/mol and that for high-temperature conduction is ~33 kJ/mol. The discharge capacity of Na3V1.9Fe0.1(PO4)3/C under typical working conditions of cathodes of sodium ion batteries has been shown to exceed that of Na3V2(PO4)3/C. The capacity of the more porous material prepared by the Pechini process (Na3V1.9Fe0.1(PO4)3/C-{II}) approaches the theoretical one at a low charge–discharge rate and retains its high level as the charge rate is raised (its discharge capacity was 117.6, 108.8, and 82.6 mAh/g at a discharge rate of 0.1C, 2C, and 8C, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whittingham, M.S., Lithium batteries and cathode materials, Chem. Rev., 2004, vol. 104, no. 10, pp. 4271–4301.

    Article  CAS  PubMed  Google Scholar 

  2. Armand, M. and Tarascon, J.-M., Building better batteries, Nature, 2008, vol. 451, no. 7179, pp. 652–657.

    Article  CAS  PubMed  Google Scholar 

  3. Goodenough, J.B. and Park, K.-S., The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc., 2013, vol. 135, no. 4, pp. 1167–1176.

    Article  CAS  PubMed  Google Scholar 

  4. Yaroslavtsev, A.B., Kulova, T.L., and Skundin, A.M., Electrode nanomaterials for lithium-ion batteries, Russ. Chem. Rev., 2015, vol. 84, no. 8, pp. 826–852.

    Article  CAS  Google Scholar 

  5. Nitta, N., Wu, F., Lee, J.T., and Yushin, G., Li-ion battery materials: present and future, Mater. Today, 2015, vol. 18, no. 5, pp. 252–264.

    Article  CAS  Google Scholar 

  6. Choi, J.W. and Aurbach, D., Promise and reality of post-lithium-ion batteries with high energy densities, Nat. Rev. Mater., 2016, vol. 1, paper 16 013.

    Google Scholar 

  7. Blomgren, G.E., The development and future of lithium ion batteries, J. Electrochem. Soc., 2017, vol. 164, no. 1, pp. A5019–A5025.

    Article  CAS  Google Scholar 

  8. Palomares, V., Serras, P., Villaluenga, I., Hueso, K.B., Carretero-Gonzalez, J., and Rojo, T., Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci., 2012, vol. 5, no. 3, pp. 5884–5901.

    Article  CAS  Google Scholar 

  9. Islam, M.S. and Fisher, C.A.J., Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties, Chem. Soc. Rev., 2014, vol. 43, no. 1, pp. 185–204.

    Article  CAS  PubMed  Google Scholar 

  10. Slater, M.D., Kim, D., Lee, E., and Johnson, C.S., Sodium-ion batteries, Adv. Funct. Mater., 2013, vol. 23, no. 8, pp. 947–958.

    Article  CAS  Google Scholar 

  11. Kundu, D., Talaie, E., Duffort, V., and Nazar, L.F., The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew. Chem., Int. Ed., 2015, vol. 54, no. 11, pp. 3431–3448.

    Article  CAS  Google Scholar 

  12. Larcher, D. and Tarascon, J.-M., Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 2015, vol. 7, no. 1, pp. 19–29.

    Article  CAS  PubMed  Google Scholar 

  13. Hwang, J.Y., Myung, S.T., and Sun, Y.K., Sodium-ion batteries: present and future, Chem. Soc. Rev., 2017, vol. 46, no. 12, pp. 3529–3614.

    Article  CAS  PubMed  Google Scholar 

  14. Xiang, X., Zhang, K., and Chen, J., Recent advances and prospects of cathode materials for sodium-ion batteries, Adv. Mater., 2015, vol. 27, no. 36, pp. 5343–5364.

    Article  CAS  PubMed  Google Scholar 

  15. Han, M.H., Gonzalo, E., Singh, G., and Rojo, T., A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries, Energy Environ. Sci., 2015, vol. 8, no. 1, pp. 81–102.

    Article  CAS  Google Scholar 

  16. Yabuuchi, N., Kajiyama, M., Iwatate, J., Nishikawa, H., Hitomi, S., Okuyama, R., Usui, R., Yamada, Y., and Komaba, S., P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries, Nat. Mater., 2012, vol. 11, no. 6, pp. 512–517.

    Article  CAS  PubMed  Google Scholar 

  17. Shiva, K., Singh, P., Zhou, W., and Goodenough, J.B., NaFe2PO4(SO4)2: a potential cathode for a Na-ion battery, Energy Environ. Sci., 2016, vol. 9, no. 10, pp. 3103–3106.

    Article  CAS  Google Scholar 

  18. Ellis, B.L., Makahnouk, W.R.M., Rowan-Weetaluktuk, W.N., Ryan, D.H., and Nazar, L.F., Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni), Chem. Mater., 2009, vol. 22, no. 3, pp. 1059–1070.

    Google Scholar 

  19. Kim, H., Shakoor, R.A., Park, C., Lim, S.Y., Kim, J.S., Jo, Y.N., Cho, W., Miyasaka, K., Kahraman, R., and Jung, Y., Na2FeP2O7 as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries: a combined experimental and theoretical study, Adv. Funct. Mater., 2013, vol. 23, no. 9, pp. 1147–1155.

    Article  CAS  Google Scholar 

  20. Niu, Y., Xu, M., Shen, B., Dai, C., and Li, C.M., Exploration of Na7Fe4.5(P2O7)4 as a cathode material for sodium-ion batteries, J. Mater. Chem. A, 2016, vol. 4, no. 42, pp. 16 531–16 535.

    Article  CAS  Google Scholar 

  21. Kim, J., Seo, D.-H., Kim, H., Park, I., Yoo, J.-K., Jung, S.-K., Park, Y.-U., and Goddard, W.A. III, and Kang, K., Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries, Energy Environ. Sci., 2015, vol. 8, no. 2, pp. 540–545.

    Article  CAS  Google Scholar 

  22. Kapaev, R.R., Chekannikov, A.A., Novikova, S.A., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., Activation of NaFePO4 with maricite structure for application as a cathode material in sodium-ion batteries, Mendeleev Commun., 2017, vol. 27, no. 3, pp. 263–264.

    Article  CAS  Google Scholar 

  23. Kapaev, R., Chekannikov, A., Novikova, S., Yaroslavtsev, S., Kulova, T., Rusakov, V., Skundin, A., and Yaroslavtsev, A., Mechanochemical treatment of maricite-type NaFePO4 for achieving high electrochemical performance, J. Solid State Electrochem., 2017, vol. 21, no. 8, pp. 2373–2380.

    Article  CAS  Google Scholar 

  24. Si, L., Yuan, Z., Hu, L., Zhu, Y., and Qian, Y., Uniform and continuous carbon coated sodium vanadium phosphate cathode materials for sodium-ion battery, J. Power Sources, 2014, vol. 272, pp. 880–885.

    Article  CAS  Google Scholar 

  25. Zhu, C., Song, K., van Aken, P.A., Maier, J., and Yu, Y., Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes, Nano Lett., 2014, vol. 14, no. 4, pp. 2175–2180.

    CAS  Google Scholar 

  26. Li, S., Dong, Y., Xu, L., Xu, X., He, L., and Mai, L., Batteries: effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries, Adv. Mater., 2014, vol. 26, no. 21, pp. 3545–3553.

    Article  CAS  PubMed  Google Scholar 

  27. Zhu, X., Fang, Y., Ai, X., Yang, H., and Cao, Y., Na3V2(PO4)3/C nanocomposite synthesized via prereduction process as high-performance cathode material for sodium-ion batteries, J. Alloys Compd., 2015, vol. 646, pp. 170–174.

    Article  CAS  Google Scholar 

  28. Aragón, M.J., Lavela, P., Ortiz, G.F., and Tirado, J.L., Effect of iron substitution in the electrochemical performance of Na3V2(PO4)3 as cathode for Na-ion batteries, J. Electrochem. Soc., 2015, vol. 162, no. 2, pp. A3077–A3083.

    Article  CAS  Google Scholar 

  29. Aragón, M.J., Lavela, P., Ortiz, G.F., and Tirado, J.L., Benefits of chromium substitution in Na3V2(PO4)3 as a potential candidate for sodium-ion batteries, ChemElectroChem, 2015, vol. 2, no. 7, pp. 995–1002.

    Article  CAS  Google Scholar 

  30. Aragón, M.J., Lavela, P., Alcantara, R., and Tirado, J.L., Effect of aluminum doping on carbon loaded Na3V2(PO4)3 as cathode material for sodium-ion batteries, Electrochim. Acta, 2015, vol. 180, pp. 824–830.

    Article  CAS  Google Scholar 

  31. Chu, Z. and Yue, C., Core-shell structured Na3V2(PO4)3/C nanocrystals embedded in multiwalled carbon nanotubes: a high-performance cathode for sodium-ion batteries, Solid State Ionics, 2016, vol. 287, pp. 36–41.

    Article  CAS  Google Scholar 

  32. Klee, R., Lavela, P., Aragón, M.J., Alcantara, R., and Tirado, J.L., Enhanced high-rate performance of manganese substituted Na3V2(PO4)3/C as cathode for sodium-ion batteries, J. Power Sources, 2016, vol. 313, pp. 73–80.

    Article  CAS  Google Scholar 

  33. Shen, W., Li, H., Guo, Z., Li, Z., Xu, Q., Liu, H., and Wang, Y., Improvement on the high-rate performance of Mn-doped Na3V2(PO4)3/C as cathode material for sodium-ion batteries, RSC Adv., 2016, vol. 6, no. 75, pp. 71581–71588.

    Article  CAS  Google Scholar 

  34. Xu, G. and Sun, G., Mg2+-doped Na3V2(PO4)3/C decorated with graphene sheets: an ultrafast Na-storage cathode for advanced energy storage, Ceram. Int., 2016, vol. 42, pp. 14 774–14 781.

    Article  CAS  Google Scholar 

  35. Li, H., Bai, Y., Wu, F., Ni, Q., and Wu, C., Na-rich Na3 + xV2–xNix(PO4)3/C for sodium ion batteries: controlling the doping site and improving the electrochemical performances, ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 41, pp. 27 779–27 787.

    Google Scholar 

  36. Chekannikov, A., Kapaev, R., Novikova, S., Tabachkova, N., Kulova, T., Skundin, A., and Yaroslavtsev, A., Na3V2(PO4)3/C/Ag nanocomposite materials for Naion batteries obtained by the modified Pechini method, J. Solid State Electrochem., 2017, vol. 21, no. 6, pp. 1615–1624.

    Article  CAS  Google Scholar 

  37. Yaroslavtsev, A.B. and Stenina, I.A., Complex phosphates with the NASICON structure (MxA2(PO4)3), Russ. J. Inorg. Chem., 2006, vol. 51, pp. S97–S116.

    Article  Google Scholar 

  38. Anantharamulu, N., Rao, K.K., Rambabu, G., Kumar, B.V., Radha, V., and Vithal, M., A wide-ranging review on Nasicon type materials, J. Mater. Sci., 2011, vol. 46, no. 9, pp. 2821–2837.

    Article  CAS  Google Scholar 

  39. Roy, R., Agrawal, D.K., Alamo, J., and Roy, R.A., [CTP]: a new structural family of near-zero expansion ceramics, Mater. Res. Bull., 1984, vol. 19, no. 4, pp. 471–477.

    Article  CAS  Google Scholar 

  40. Ermilova, M.M., Sukhanov, M.V., Borisov, R.S., Orekhova, N.V., Pet’kov, V.I., Novikova, S.A., Il’in, A.B., and Yaroslavtsev, A.B., Synthesis of the new framework phosphates and their catalytic activity in ethanol conversion into hydrocarbons, Catal. Today, 2012, vol. 193, no. 1, pp. 37–41.

    Article  CAS  Google Scholar 

  41. Stenina, I.A., Pinus, I.Y., Rebrov, A.I., and Yaroslavtsev, A.B., Lithium and hydrogen ions transport in materials with NASICON structure, Solid State Ionics, 2004, vol. 175, nos. 1–4, pp. 445–449.

    Article  CAS  Google Scholar 

  42. Svitan’ko, A.I., Novikova, S.A., Safronov, D.V., and Yaroslavtsev, A.B., Cation mobility in Li1 + xTi2–x-Crx(PO4)3 NASICON-type phosphates, Inorg. Mater., 2011, vol. 47, no. 12, pp. 1391–1395.

    Article  CAS  Google Scholar 

  43. Goodenough, J.B., Hong, H.Y.-P., and Kafalas, J.A., Fast Na+-ion transport in skeleton structures, Mater. Res. Bull., 1976, vol. 11, pp. 203–220.

    Article  CAS  Google Scholar 

  44. Naqash, S., Ma, Q., Tietz, F., and Guillon, O., Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid state reaction, Solid State Ionics, 2017, vol. 302, pp. 83–91.

    Article  CAS  Google Scholar 

  45. Moshareva, M.A., Novikova, S.A., and Yaroslavtsev, A.B., Synthesis and ionic conductivity of (NH4)1–xHxHf2-(PO4)3 (x = 0–1) NASICON-type materials, Inorg. Mater., 2016, vol. 52, no. 12, pp. 1283–1290.

    Article  CAS  Google Scholar 

  46. Jian, Z., Hu, Y.-S., Ji, X., and Chen, W., NASICONstructured materials for energy storage, Adv. Mater., 2017, vol. 29, no. 20, paper 1 601 925.

    Google Scholar 

  47. Plashnitsa, L.S., Kobayashi, E., Noguchi, Y., Okada, S., and Yamaki, J.-I., Performance of NASICON symmetric cell with ionic liquid electrolyte, J. Electrochem. Soc., 2010, vol. 157, no. 4, pp. A536–A543.

    Article  CAS  Google Scholar 

  48. Song, J., Park, S., Mathew, V., Gim, J., Kim, S., Jo, J., Kim, S., Alfaruqi, M.H., Baboo, J.P., Kim, I.-H., Song, S.-J., and Kim, J., An enhanced high-rate Na3V2(PO4)3–Ni2P nanocomposite cathode with stable lifetime for sodium-ion batteries, ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 51, pp. 35 235–35 242.

    Article  CAS  Google Scholar 

  49. Li, H., Yu, X., Bai, Y., Wu, F., Wu, C., Liu, L.-Y., and Yang, X.-Q., Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries, J. Mater. Chem. A, 2015, vol. 3, no. 18, pp. 9578–9586.

    Article  CAS  Google Scholar 

  50. Lalére, F., Seznec, V., Courty, M., David, R., Chotard, J.N., and Masquelier, C., Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution, J. Mater. Chem. A, 2015, vol. 3, no. 31, pp. 16198–16205.

    Article  CAS  Google Scholar 

  51. Patterson, A.L., The Scherrer formula for X-ray particle size determination, Phys. Rev., 1939, vol. 56, pp. 978–982.

    Article  CAS  Google Scholar 

  52. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767.

    Article  Google Scholar 

  53. Delmas, C., Viala, J.C., and Olazcuaga, R., Ionic-conductivity measurements in the solution Na1 + xZr2–xLx(PO4)3 (L = Cr, Yb), Mater. Res. Bull., 1981, vol. 16, no. 1, pp. 83–90.

    Article  CAS  Google Scholar 

  54. Stenina, I.A., Zhizhin, M.G., Lazoryak, B.I., and Yaroslavtsev, A.B., Phase transitions, structure and ion conductivity of zirconium hydrogen phosphates with the NASICON structure, H1 ± XZr2–XMX(PO4)3. H2O (M = Nb, Y), Mater. Res. Bull., 2009, vol. 44, no. 7, pp. 1608–1612.

    CAS  Google Scholar 

  55. Novikova, S.A. and Yaroslavtsev, A.B., Cathode materials based on olivine lithium iron phosphates for lithium-ion batteries, Rev. Adv. Mater. Sci., 2017, vol. 49, no. 2, pp. 129–139.

    Google Scholar 

  56. Wilcox, J.D., Doeff, M.M., Marcinek, M., and Kostecki, R., Factors influencing the quality of carbon coatings on LiFePO4, J. Electrochem. Soc., 2007, vol. 154, no. 5, pp. A389–A395.

    Article  CAS  Google Scholar 

  57. Vidano, R.P., Fischbach, D.B., Willis, L.J., and Loehr, T.M., Observation of Raman band shifting with excitation wavelength for carbons and graphites, Solid State Commun., 1981, vol. 39, no. 2, pp. 341–344.

    Article  CAS  Google Scholar 

  58. Stenina, I.A., Bukalov, S.S., Kulova, T.L., Skundin, A.M., Tabachkova, N.Yu., and Yaroslavtsev, A.B., Influence of a carbon coating on the electrochemical properties of lithium-titanate-based nanosized materials, Nanotechnol. Russ., 2015, vol. 10, nos. 11–12, pp. 865–871.

    Article  CAS  Google Scholar 

  59. Doeff, M.M., Hu, Y., McLarnon, F., and Kostecki, R., Effect of surface carbon structure on the electrochemical performance of LiFePO4, Electrochem. Solid-State Lett., 2003, vol. 6, no. 10, pp. A207–A209.

    Article  CAS  Google Scholar 

  60. Swain, P., Viji, M., Mocherla, P.S.V., and Sudakar, C., Carbon coating on the current collector and LiFePO4 nanoparticles—influence of sp2 and sp3-like disordered carbon on the electrochemical properties, J. Power Sources, 2015, vol. 293, pp. 613–625.

    Article  CAS  Google Scholar 

  61. Hong, J., Wang, C., Dudney, N.J., and Lance, M.J., Characterization and performance of LiFePO4 thin film cathodes prepared with radio-frequency magnetron-sputter deposition, J. Electrochem. Soc., 2007, vol. 154, no. 8, pp. A805–A809.

    Article  CAS  Google Scholar 

  62. Inada, R., Ishida, K., Tojo, M., Okada, T., Tojo, T., and Sakurai, Y., Properties of aerosol deposited NASICON-type Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte thin films, Ceram. Int., 2015, vol. 41, no. 9, pp. 11136–11142.

    Article  CAS  Google Scholar 

  63. Kunshina, G.B., Bocharova, I.V., and Lokshin, E.P., Synthesis and conductivity studies of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte, Inorg. Mater., 2016, vol. 52, no. 3, pp. 279–284.

    Article  CAS  Google Scholar 

  64. Irvin, J.T.S., Sinclair, D.C., and West, A.R., Electroceramics: characterization by impedance spectroscopy, Adv. Mater., 1990, vol. 2, no. 3, pp. 132–138.

    Article  Google Scholar 

  65. Moshareva, M.A. and Novikova, S.A., Synthesis and conductivity study of solid electrolytes Li1 + xAlxGe2–x(PO4)3 (x = 0–0.65), Russ. J. Inorg. Chem., 2018, vol. 63, no. 3, pp. 319–323.

    Article  CAS  Google Scholar 

  66. West, A.R., Solid State Chemistry and Its Applications, Chichester: Wiley, 1985.

    Google Scholar 

  67. Kapaev, R., Novikova, S., Kulova, T., Skundin, A., and Yaroslavtsev, A., Conductivity and electrochemical behavior of Li1-xFe1-2x(MIIMIII)xPO4 with olivine structure, J. Solid State Electrochem., 2015, vol. 19, no. 9, pp. 2793–2801.

    Article  CAS  Google Scholar 

  68. Yaroslavtsev, A.B., Ion transport in heterogeneous solid systems, Russ. J. Inorg. Chem., 2000, vol. 45, suppl. 3, pp. S249–S267.

    Google Scholar 

  69. Safronov, D.V., Novikova, S.A., Skundin, A.M., and Yaroslavtsev, A.B., Lithium intercalation and deintercalation processes in LiFePO4, Inorg. Mater., 2012, vol. 48, no. 1, pp. 57–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Novikova.

Additional information

Original Russian Text © S.A. Novikova, R.V. Larkovich, A.A. Chekannikov, T.L. Kulova, A.M. Skundin, A.B. Yaroslavtsev, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikova, S.A., Larkovich, R.V., Chekannikov, A.A. et al. Electrical Conductivity and Electrochemical Characteristics of Na3V2(PO4)3-Based NASICON-Type Materials. Inorg Mater 54, 794–804 (2018). https://doi.org/10.1134/S0020168518080149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518080149

Keywords

Navigation