Synthesis and High-Temperature Heat Capacity of Neodymium Titanate

Abstract

Neodymium dititanate, Nd2Ti2O7 (monoclinic structure, sp. gr. P21), has been prepared by solid-state reaction in air at temperatures from 1673 to 1773 K using the Nd2O3 and TiO2 oxides as starting materials. The high-temperature heat capacity of the resultant polycrystalline Nd2Ti2O7 samples has been determined by differential scanning calorimetry. The experimental Cp(T) data have been used to evaluate the thermodynamic functions of neodymium dititanate (enthalpy increment H°(T)–H°(320 K), entropy change S°(T)–S°(320 K), and reduced Gibbs energy Ф°(T)) in the temperature range 320–1053 K.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Nanamatsu, S., Kimura, M., Doi, K., et al., A new ferroelectric: La2Ti2O7, Ferroelectrics, 1974, vol. 8, pp. 511–513.

    Article  CAS  Google Scholar 

  2. 2.

    Shcherbakova, L.G., Mamsurova, L.G., and Sikhanova, G.E., Rare-earth titanates, Usp. Khim., 1979, vol. 58, no. 3, pp. 423–447.

    Google Scholar 

  3. 3.

    Hwang, D.W., Lee, J.S., Li, W., et al., Electronic band structure and photocatalytic activity of Ln2Ti2O7 (Ln = La, Pr, Nd), J. Phys. Chem. B, 2003, vol. 107, pp. 4963–4970.

    Article  CAS  Google Scholar 

  4. 4.

    Krishnankutty, K. and Dayas, K.R., Synthesis and characterization of monoclinic rare earth titanates, RE2Ti2O7 (RE = La, Pr, Nd), by a modified SHS method using inorganic activator, Bull. Mater. Sci., 2008, vol. 31, no. 6, pp. 907–918.

    CAS  Google Scholar 

  5. 5.

    Komissarova, L.N., Shatskii, V.M., Pushkina, G.Ya., et al., Soedineniya redkozemel’nykh elementov. Karbonaty, oksalaty, nitraty, titanaty (Rare-Earth Compounds: Carbonates, Oxalates, Nitrates, and Titanates), Moscow: Nauka, 1984.

    Google Scholar 

  6. 6.

    Vasil’eva, M.F., Gerasyuk, A.K., Goev, A.I., et al., High-quality optical coatings for the visible and near-IR spectral regions, based on new film-forming materials: gadolinium dititanate and lutetium dititanate, Prikl. Fiz., 2007, no. 5, pp. 91–98.

    Google Scholar 

  7. 7.

    Milanova, M.M., Kakihana, M., Arima, M., et al., A simple solution route to the synthesis of pure La2Ti2O7 and Nd2Ti2O7 at 700–800 °C by polymerized complex method, J. Alloys Compd., 1996, vol. 242, pp. 6–10.

    Article  CAS  Google Scholar 

  8. 8.

    Balakrishnan, G., Petrenko, O.A., Lees, M.R., et al., Single crystal growth of rare-earth titanate pyrochlores, J. Phys.: Condens. Matter, 1998, vol. 10, pp. L723–L725.

    CAS  Google Scholar 

  9. 9.

    Shlyakhtina, A.V., Morphotropy, isomorphism, and polymorphism of Ln2M2O7-Based (Ln = La–Lu, Y, Sc; M = Ti, Zr, Hf, Sn) oxides, Crystallogr. Rep., 2013, vol. 58, no. 4, pp. 548–562.

    CAS  Google Scholar 

  10. 10.

    Scheunemann, K. and Müller-Buschbaum, H., Zur kristallstruktur von Nd2Ti2O7, J. Inorg. Nucl. Chem., 1975, vol. 37, no. 11, pp. 2261–2263.

    Article  CAS  Google Scholar 

  11. 11.

    Sloan, J. and Tilley, R.J.D., Phase formation in the Nd2Ti2O7–SrTiO3 system at 1350 °C in the presence of V2O5, CuV2O6, or SrCuO2, J. Solid State Chem., 1996, vol. 121, pp. 324–331.

    Article  CAS  Google Scholar 

  12. 12.

    Xing, H.X., Long, G., Guo, H., et al., Anisotropic paramagnetism of monoclinic Nd2Ti2O7 single crystals, J. Phys.: Condens. Matter, 2011, vol. 23, paper 21605.

  13. 13.

    Ishizawa, N., Ninomiya, K., Sakakura, T., et al., Redetermination of Nd2Ti2O7: a non-centrosymmetric structure with perovskite-type slabs, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2013, vol. 69, paper i19.

  14. 14.

    Atuchin, V.V., Gavrilova, T.A., Crivel, J.-C., et al., Electronic structure of layered titanate Nd2Ti2O7, Surf. Sci., 2008, vol. 602, pp. 3095–3099.

    Article  CAS  Google Scholar 

  15. 15.

    Guo, H., Xing, H., Tong, J., et al., Possible spin frustration in Nd2Ti2O7 probed by muon spin relaxation, J. Phys.: Condens. Matter, 2014, vol. 28, paper 436 002.

  16. 16.

    Winfield, G., Azough, F., and Freer, R., Neodymium titanate (Nd2Ti2O7) ceramics, Ferroelectrics, 1992, vol. 133, pp. 181–186.

    Article  CAS  Google Scholar 

  17. 17.

    Zagorodnyuk, A.V., Sadkovskaya, L.V., Shamrai, G.V., et al., System Nd2O3–TiO2, Russ. J. Inorg. Chem., 1986, vol. 31, no. 9, pp. 1377–1379.

    Google Scholar 

  18. 18.

    Huang, Z.K., Lin, Z.X., Yen, T.S., et al., J. Chin. Silicate Soc., 1979, vol. 7, no. 1, pp. 1–10.

    CAS  Google Scholar 

  19. 19.

    Gong, W. and Zhang, R., Phase relationship in the TiO2–Nd2O3 pseudo-binary system, J. Alloys Compd., 2013, vol. 548, pp. 216–221.

    Article  CAS  Google Scholar 

  20. 20.

    Denisova, L.T., Chumilina, L.G., Denisov, V.M., et al., High-temperature heat capacity of samarium and erbium titanates with pyrochlore structure, Phys. Solid State, 2017, vol. 59, no. 12, pp. 2321–2324.

    Article  CAS  Google Scholar 

  21. 21.

    Denisov, V.M., Denisova, L.T., Irtyugo, L.A., and Biront, V.S., Thermal physical properties of Bi4Ge3O12 single crystals, Phys. Solid State, 2010, vol. 52, no. 7, pp. 1274–1277.

    Article  CAS  Google Scholar 

  22. 22.

    Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., et al., High-temperature heat capacity and thermodynamic properties of Tb2Sn2O7, Inorg. Mater., 2017, vol. 53, no. 1, pp. 67–69.

    Article  CAS  Google Scholar 

  23. 23.

    Rahimi-Nasrabadi, M., Mahdavi, S., and Adib, K., Photocatalytically active La2Ti2O7 nanostructures, synthesis and characterization, J. Mater. Sci.: Mater. Electron., 2017, vol. 28, no. 17, pp. 12 564–12 571.

    Google Scholar 

  24. 24.

    Orum, A., Takatori, K., Hori, S., et al., Atomic force microscopy surface analysis of layered perovskite La2Ti2O7 particles, Jpn. J. Appl. Phys., 2016, vol. 55, paper 08NB08.

  25. 25.

    Gao, Z., Liu, L., Han, X., et al., Cerium titanate (Ce2Ti2O7): a ferroelectric ceramic with perovskitelike layered structure (PLS), J. Am. Ceram. Soc., 2015, vol. 98, no. 12, pp. 3930–3934.

    Article  CAS  Google Scholar 

  26. 26.

    Koz’min, P.A., Zakharov, N.A., and Surazhskaya, M.D., Crystal structure of Pr2Ti2O7, Inorg. Mater, 1997, vol. 33, no. 8, pp. 850–852.

    Google Scholar 

  27. 27.

    Patwe, S.J., Katari, V., Salke, N.P., et al., Structural and electrical properties of layered perovskite type Pr2Ti2O7: experimental and theoretical investigations, J. Mater. Chem., 2015, vol. 3, pp. 4570–4584.

    CAS  Google Scholar 

  28. 28.

    Kesari, S., Salke, N.P., Patwe, S.J., et al., Structural stability and anharmonicity of Pr2Ti2O7: Raman spectroscopic and XRD studies, Inorg. Chem., 2016, vol. 22, pp. 11791–11800.

    Article  CAS  Google Scholar 

  29. 29.

    Shannon, R.D., Revised effective ionic radii and systematic studies interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767.

    Article  Google Scholar 

  30. 30.

    Reznitskii, L.A., Kalorimetriya tverdogo tela (Calorimetry of Solids), Moscow: Mosk. Gos. Univ., 1981.

    Google Scholar 

  31. 31.

    Pet’kov, V.I., Asabina, E.A., Sukhanov, M.V., et al., Standard thermodynamic functions of CaNi0.5Zr1.5(PO4)3 crystalline phosphate in the range of T → 0 to 640 K, Russ. J. Phys. Chem. A, 2013, vol. 87, no. 12, pp. 1960–1968.

    Article  CAS  Google Scholar 

  32. 32.

    Saton, H., Takagi, M., Kinukawa, K.-I., et al., Heat capacity of LaMnO3, Thermochim. Acta, 1997, vol. 299, pp. 123–126.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. T. Denisova.

Additional information

Original Russian Text © L.T. Denisova, Yu.F. Kargin, L.G. Chumilina, V.V. Ryabov, N.V. Belousova, V.M. Denisov, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Denisova, L.T., Kargin, Y.F., Chumilina, L.G. et al. Synthesis and High-Temperature Heat Capacity of Neodymium Titanate. Inorg Mater 54, 815–819 (2018). https://doi.org/10.1134/S0020168518080046

Download citation

Keywords

  • neodymium dititanate
  • differential scanning calorimetry
  • high-temperature heat capacity
  • thermodynamic properties