Skip to main content
Log in

Silicidation of Tantalum Carbide and Zirconium Carbide Powders in a Gaseous SiO Environment

  • Published:
Inorganic Materials Aims and scope

Abstract

Tantalum carbide and zirconium carbide powders have been silicided in a gaseous SiO atmosphere at 1400°C. X-ray diffraction and energy dispersive X-ray microanalysis results demonstrate that the silicidation products are Ta5Si3 and TaSi2 in the case of TaC and ZrSi in the case of ZrC. The silicidation rate has been shown to influence the percentages of these silicides in the reaction products. The degree of silicidation reached in this study is about 20% in the case of TaC and about 16% in the case of ZrC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kosolapova, T.Ya., Karbidy (Carbides), Moscow: Metallurgiya, 1968.

    Google Scholar 

  2. Samsonov, G.V., Upadkhaya, G.Sh., and Neshpor, V.S., Fizicheskoe materialovedenie karbidov (Physics and Technology of Carbides), Kiev: Naukova Dumka, 1974.

    Google Scholar 

  3. Samsonov, G.V., Kosolapova, T.Ya., Gnesin, G.G., and Fedorus, V.B., Karbidy i splavy na ikh osnove (Carbides and Carbide-Based Alloys), Kiev: Naukova Dumka, 1976.

    Google Scholar 

  4. Berg, G., Friedrich, C., Broszeit, E., and Berger, C., Handbook of Ceramic Hard Materials. Data Collection of Properties of Hard Material, Weinheim: Wiley–VCH, 2000.

    Google Scholar 

  5. Pierson, H.O., Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications, New York: Noyes, 1996.

    Google Scholar 

  6. Lengauer, W., Handbook of Ceramic Hard Materials. Transition Metal Carbides, Nitrides, and Carbonitrides, Weinheim: Wiley–VCH, 2000.

    Google Scholar 

  7. Wang, C.R., Yang, J.-M., and Hoffman, W., Thermal stability of refractory carbide/boride composites, Mater. Chem. Phys., 2002, vol. 74, no. 3, pp. 272–281.

    Article  CAS  Google Scholar 

  8. Dickerson, M.B., Wurm, P.J., Schorr, L.R., Wapner, P.G., and Sandhage, K.H., Near net-shape, ultra-high melt-ing, recession-resistance ZrC/W-based rocket nozzle liners via the displacive compensation of porosity (DCP) method, J. Mater. Sci., 2004, vol. 39, no. 19, pp. 6005–6015.

    Article  CAS  Google Scholar 

  9. Ryu, H.J., Lee, Y.W., Cha, S.I., and Hong, S.H., Sintering behaviour and microstructures of carbides and nitrides for the inert matrix fuel by spark plasma sintering, J. Nucl. Mater., 2006, vol. 352, nos. 1–3, pp. 341–348.

    Article  CAS  Google Scholar 

  10. Balani, K., Gonzalez, G., and Agarwal, A., Synthesis, microstructural characterization, and mechanical property evaluation of vacuum plasma sprayed tantalum carbide, J. Am. Ceram. Soc., 2006, vol. 89, no. 4, pp. 1419–1425.

    Article  CAS  Google Scholar 

  11. Wuchina, E., Opila, E., Opeka, M., Fahrenholtz, W., and Talmy, I., UHTCs: ultra-high temperature ceramic materials for extreme environment applications, Electrochem. Soc. Interface, 2007, vol. 16, no. 4, pp. 30–36.

    CAS  Google Scholar 

  12. Vasudevamurthy, G., Knight, T.W., Roberts, E., and Adams, T.M., Laboratory production of zirconium carbide compacts for use in inert matrix fuels, J. Nucl. Mater., 2008, vol. 374, nos. 1–2, pp. 241–247.

    Article  CAS  Google Scholar 

  13. Jackson, H.F., Jayaseelan, D.D., Lee, W.E., et al., Laser melting of spark plasma-sintered zirconium carbide: thermophysical properties of a generation IV very high-temperature reactor material, Int. J. Appl. Ceram. Technol., 2010, vol. 7, no. 3, pp. 316–326.

    Article  CAS  Google Scholar 

  14. Katoh, Y., Vasudevamurthy, G., Nozawa, T., and Snead, L.L., Properties of zirconium carbide for nuclear fuel applications, J. Nucl. Mater., 2013, vol. 441, nos. 1–3, pp. 718–742.

    Article  CAS  Google Scholar 

  15. Fahrenholtz, W.G., Wuchina, E.J., Lee, W.E., and Zhou, Y., Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, New York: Wiley, 2014.

    Book  Google Scholar 

  16. Pienti, L., Sciti, D., Silvestroni, L., Cecere, A., and Savino, R., Ablation tests on HfC-and TaC-based ceramics for aeropropulsive applications, J. Eur. Ceram. Soc., 2015, vol. 35, no. 5, pp. 1401–1411.

    Article  CAS  Google Scholar 

  17. Fahrenholtz, W.G. and Hilmas, G.E., Ultra-high temperature ceramics: materials for extreme environments, Scr. Mater., 2017, vol. 129, pp. 94–99.

    Article  CAS  Google Scholar 

  18. Kieffer, R. and Benesovsky, F., Hartmetalle, Vienna: Springer, 1965.

    Book  Google Scholar 

  19. Alekseeva, T.I., Galevskii, G.V., Rudneva, V.V., and Galevskii, S.G., Application of zirconium carbide: developments and prospects, Vestn. Gorno-Metall. Sekt. Ross. Akad. Estestv. Nauk. Otd. Metall., 2016, no. 37, pp. 76–89.

    Google Scholar 

  20. Khaleghi, E., Lin, Y.S., Meyers, M.A., and Olevsky, E.A., Spark plasma sintering of tantalum carbide, Scr. Mater., 2010, vol. 63, no. 6, pp. 577–580.

    Article  CAS  Google Scholar 

  21. Liu, L., Ye, F., and Zhou, Y., New route to densify tantalum carbide at 1400°C by spark plasma sintering, Mat. Sci. Eng., A, 2011, vol. 528, nos. 13–14, pp. 4710–4714.

    Article  CAS  Google Scholar 

  22. Morris, R.A., Wang, B., Matson, L.E., and Thompson, G.B., Microstructural formations and phase transformation pathways in hot isostatically pressed tantalum carbides, Acta Mater., 2012, vol. 60, no. 1, pp. 139–148.

    Article  CAS  Google Scholar 

  23. Nino, A., Hirabara, T., Sugiyama, S., and Taimatsu, H., Preparation and characterization of tantalum carbide (TaC) ceramics, Int. J. Refract. Met. Hard Mater., 2015, vol. 52, pp. 203–208.

    Article  CAS  Google Scholar 

  24. Cedillos-Barraza, O., Grasso, S., Nasiri, N.A., Jayaseelan, D.D., Reeceb, M.J., and Lee, W.E., Sintering behaviour, solid solution formation and characterisation of TaC, HfC and TaC–HfC fabricated by spark plasma sintering, J. Eur. Ceram. Soc., 2016, vol. 36, no. 7, pp. 1539–1548.

    CAS  Google Scholar 

  25. Rezaei, F., Kakroudi, M.G., Shahedifar, V., Vafa, N.P., and Golrokhsari, M., Densification, microstructure and mechanical properties of hot pressed tantalum carbide, Ceram. Int., 2017, vol. 43, no. 4, pp. 3489–3494.

    Article  CAS  Google Scholar 

  26. Sun, S.-K., Zhang, G.-J., Wu, W.-W., Liu, J.-X., Suzuki, T., and Sakka, Y., Reactive spark plasma sintering of ZrC and HfC ceramics with fine microstructures, Scr. Mater., 2013, vol. 69, no. 2, pp. 139–142.

    Article  CAS  Google Scholar 

  27. Bertagnoli, D., Borrero-Lopez, O., Rodriguez-Rojas, F., Guiberteau, F., and Ortiz, A.L., Effect of processing conditions on the sliding-wear resistance of ZrC triboceramics fabricated by spark-plasma sintering, Ceram. Int., 2015, vol. 41, no. 10, pp. 15 278–15 282.

    Article  CAS  Google Scholar 

  28. Zhang, X., Hilmas, G.E., Fahrenholtz, W.G., and Deason, D.M., Hot pressing of tantalum carbide with and without sintering additives, J. Am. Ceram. Soc., 2007, vol. 90, no. 2, pp. 393–401.

    Article  CAS  Google Scholar 

  29. Sciti, D., Silvestroni, L., Guicciardi, S., Fabbriche, D.D., and Bellosi, A., Processing, mechanical properties and oxidation behavior of TaC and HfC composites containing 15 vol% TaSi2 or MoSi2, J. Mater. Res., 2009, vol. 24, no. 6, pp. 2056–2065.

    Article  CAS  Google Scholar 

  30. Hu, C., He, L., Li, F., Wu, L., Wang, J., Li, M., Bao, Y.W., and Zhou, Y., In situ reaction synthesis and mechanical properties of TaC–TaSi2 composites, Int. J. Appl. Ceram. Technol., 2010, vol. 7, no. 6, pp. 697–703.

    Article  CAS  Google Scholar 

  31. Liu, H., Liu, L., Ye, F., Zhang, Z., and Zhou, Y., Microstructure and mechanical properties of the spark plasma sintered TaC/SiC composites: effects of sintering temperatures, J. Eur. Ceram. Soc., 2012, vol. 32, no. 13, pp. 3617–3625.

    Article  CAS  Google Scholar 

  32. Zhong, L., Liu, L., Worsch, C., Gonzalez, J., Springer, A., and Ye, F., Transient liquid phase sintering of tantalum carbide ceramics by using silicon as the sintering aid and its effects on microstructure and mechanical properties, Mater. Chem. Phys., 2015, vols. 149–150, pp. 505–511.

    Article  CAS  Google Scholar 

  33. Geng, G., Liu, L., Wang, Y., Hai, W., Sun, W., Chen, Y., and Wu, L., Microstructure and mechanical properties of TaC ceramics with 1–7.5 mol% Si as sintering aid, J. Am. Ceram. Soc., 2017, vol. 100, no. 6, pp. 2461–2470.

    Article  CAS  Google Scholar 

  34. Sciti, D., Guicciardia, S., and Nygren, M., Spark plasma sintering and mechanical behavior of ZrC-based composites, Scr. Mater., 2008, vol. 59, pp. 638–641.

    Article  CAS  Google Scholar 

  35. Silvestroni, L., Sciti, D., Balat-Pichelin, M., and Charpentier, L., Zirconium carbide doped with tantalum silicide: microstructure, mechanical properties and hightemperature oxidation, Mater. Chem. Phys., 2013, vol. 143, no. 1, pp. 407–415.

    Article  CAS  Google Scholar 

  36. Charpentier, L., Balat-Pichelin, M., Beche, E., Sciti, D., and Silvestroni, L., Microstructural characterization of ZrC–MoSi2 composites oxidized in air at high temperatures, Appl. Surf. Sci., 2013, vol. 283, pp. 751–758.

    Article  CAS  Google Scholar 

  37. Istomin, P., Istomina, E., Nadutkin, A., and Grass, V., Effect of silicidation pretreatment with gaseous SiO on sinterability of TiC powders, Int. J. Refract. Met. Hard Mater., 2016, vol. 57, pp. 12–18.

    Article  CAS  Google Scholar 

  38. Belyaev, I.M., Istomin, P.V., and Istomina, E.I., Reaction of metallic titanium with SiO gas, Inorg. Mater., 2017, vol. 53, no. 9, pp. 916–922.

    Article  CAS  Google Scholar 

  39. Istomina, E.I., Istomin, P.V., and Nadutkin, A.V., Preparation of biomorphic SiC, Inorg. Mater., 2013, vol. 49, no. 10, pp. 984–987.

    Article  CAS  Google Scholar 

  40. Kraus, W. and Nolze, G., Powder Cell–a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, J. Appl. Crystallogr., 1996, vol. 29, pp. 301–303.

    Article  CAS  Google Scholar 

  41. Dinsdale, A.T., SGTE data for pure elements, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 1991, vol. 15, no. 4, pp. 317–425.

    Article  CAS  Google Scholar 

  42. Chase, M.W., NIST–JANAF Thermodynamic Tables, J. Phys. Chem. Ref. Data Monogr., 1998, no. 9.

    Google Scholar 

  43. Guillermet, A.F., Analysis of thermochemical properties and phase stability in the zirconium–carbon system, J. Alloys Compd., 1995, vol. 217, pp. 69–89.

    Article  Google Scholar 

  44. Chen, H.M., Xiang, Y., Wang, S., Zheng, F., Liu, L.B., and Jin, Z.P., Thermodynamic assessment of the C–Si–Zr system, J. Alloys Compd., 2009, vol. 474, pp. 76–80.

    Article  CAS  Google Scholar 

  45. Frisk, K. and Guillermet, A.F., Gibbs energy coupling of the phase diagram and thermochemistry in the tantalum–carbon system, J. Alloys Compd., 1996, vol. 238, pp. 167–179.

    Article  CAS  Google Scholar 

  46. Guo, Z., Yuan, W., Sun, Y., Cai, Z., and Qiao, Z., Thermodynamic assessment of the Si–Ta and Si–W systems, J. Phase Equilib. Diffus., 2009, vol. 30, no. 5, pp. 564–570.

    Article  CAS  Google Scholar 

  47. Kazenas, E.K. and Tsvetkov, Yu.V., Isparenie oksidov (Vaporization of Oxides), Moscow: Nauka, 1997.

    Google Scholar 

  48. Ferguson, F.T. and Nuth, J.A., Vapor pressure of silicon monoxide, J. Chem. Eng. Data, 2008, vol. 53, pp. 2824–2832.

    Article  CAS  Google Scholar 

  49. Wittmer, D.E. and Temuri, M.Z., Thermochemical studies in selected metal–carbon–oxygen systems, J. Am. Ceram. Soc., 1991, vol. 74, pp. 973–982.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Istomin.

Additional information

Original Russian Text © I.M. Belyaev, P.V. Istomin, E.I. Istomina, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, I.M., Istomin, P.V. & Istomina, E.I. Silicidation of Tantalum Carbide and Zirconium Carbide Powders in a Gaseous SiO Environment. Inorg Mater 54, 779–786 (2018). https://doi.org/10.1134/S0020168518080022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518080022

Keywords

Navigation