Skip to main content
Log in

Thermodynamic Assessment of the Si-Ta and Si-W Systems

  • Basic and Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The knowledge of phase diagram and thermodynamic properties of the Si-Ta and Si-W systems is of technical importance for metallic contacts between Ta, W, and SiC in electrical and electronic devices. The phase diagram and thermodynamic properties of the Si-Ta and Si-W systems were assessed using the CALPHAD approach with available experimental data. The intermetallic compounds of the two systems were modeled as stoichiometric ones. A set of self-consistent thermodynamic parameters were obtained and the calculated phase equilibria were found to be in reasonable agreement with most experimental data. The calculated enthalpies of formation of the silicides in the Si-Ta and Si-W systems were compared with the reported values. The enthalpies of mixing of liquid at 2000 K in similar Si-transition metal systems were used for comparison in order to judge the rationality of the calculations. The assessed thermodynamic descriptions of the Si-Ta and Si-W binary systems will serve as part of the thermodynamic database for the Si-C-M (M: Ta and W) alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L.M. Porter and R.F. Davis, A Critical Review of Ohmic and Rectifying Contacts for Silicon Carbide, Mater. Sci. Eng. B, 1995, 34, p 83-105

    Article  Google Scholar 

  2. F. Cacho, S. Orain, G. Gailletaud, and H. Jaouen, A Constitutive Single Crystal Model for the Silicon Mechanical Behavior: Applications to the Stress Induced by Silicided Lines and STI, in MOS Technologies, Microelectron. Reliab., 2007, 47, p 161-167

    Article  Google Scholar 

  3. M.E. Schlesinger, Thermodynamics of Solid Transition-Metal Silicides, Chem. Rev., 1990, 90, p 607-628

    Article  Google Scholar 

  4. J. Feng, M. Naka, and J.C. Schuster, Interfacial Reaction and Strength of SiC/Ta/SiC Joint, J. Jpn. Inst. Met., 1997, 61, p 456-461

    Google Scholar 

  5. H. Yang, T.H. Peng, W.J. Wang, D.F. Zhang, and X.L. Chen, Ta/Ni/Ta Multilayered Ohmic Contacts on n-Type SiC, Appl. Surf. Sci., 2007, 254, p 527-531

    Article  ADS  Google Scholar 

  6. W.F. Seng and P.A. Barnes, Calculations of Tungsten Silicide and Carbide Formation on SiC Using the Gibbs Free Energy, Mater. Sci. Eng. B, 2000, 72, p 13-18

    Article  Google Scholar 

  7. Y.A. Chang and C.R. Kao, Application of Thermodynamics, Phase Equilibria and Kinetics to In Situ Composite Synthesis via Ternary Solid-State Displacement Reactions, Pure Appl. Chem., 1994, 66, p 1797-1806

    Article  Google Scholar 

  8. F. Goesmann and R. Schmid-Fetzer, Metal on 6H-SiC: Contact Formation from the Materials Science Point of View, Mater. Sci. Eng. B, 1997, 46, p 357-362

    Article  Google Scholar 

  9. Y. Du and J.C. Schuster, Experimental Investigation and Thermodynamic Description of the Constitution of the Ternary System Cr-Si-C, J. Am. Ceram. Soc., 2000, 83, p 2067-2073

    Article  Google Scholar 

  10. L.L. Xu, J. Wang, H.S. Liu, and Z.P. Jin, Thermodynamic Assessment of the Pt-Si Binary System, CALPHAD, 2008, 32, p 101-105

    Article  Google Scholar 

  11. T. Tokunaga, K. Nishio, H. Ohtani, and M. Hasebe, Thermodynamic Assessment of the Ni-Si System by Incorporating Ab Initio Energetic Calculations into the CALPHAD Approach, CALPHAD, 2003, 27, p 161-168

    Article  Google Scholar 

  12. L.J. Zhang, Y. Du, H.H. Xu, and Z. Pan, Experimental Investigation and Thermodynamic Description of the Co-Si System, CALPHAD, 2006, 30, p 470-481

    Article  Google Scholar 

  13. C. Zhang, Y. Du, W. Xiong, H.H. Xu, P. Nash, Y.F. Ouyang, and R.X. Hu, Thermodynamic Modeling of the V-Si System Supported by Key Experiments, CALPHAD, 2008, 32, p 320-325

    Article  Google Scholar 

  14. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, ASM International, Materials Park, OH, 1990

    Google Scholar 

  15. C. Vahlas, P.Y. Chevalier, and E. Blanquet, A Thermodynamic Evaluation of Four Si-M (M = Mo, Ta, Ti, W) Binary Systems, CALPHAD, 1989, 13, p 273-292

    Article  Google Scholar 

  16. R. Kieffer, F. Benesovsky, H. Nowotny, and H. Schachner, Contribution to the System Tantalum-Silicon, Z. Metallkd., 1953, 44, p 242-246

    Google Scholar 

  17. L. Brewer, A.W. Searcy, D.H. Templeton, and C.H. Dauben, High-Melting Silicides, J. Am. Ceram. Soc., 1950, 33(10), p 291-294

    Article  Google Scholar 

  18. L. Brewer and O. Krikorian, Reactions of Refractory Silicides with Carbon and Nitrogen, J. Electrochem. Soc., 1956, 103(12), p 38-51

    Article  Google Scholar 

  19. D.K. Deardorff, R.E. Siemens, P.A. Romans, and R.A. McCune, New Tetragonal Compounds Nb3Si and Ta3Si, J. Less-Common Met., 1969, 18(1), p 11-26

    Article  Google Scholar 

  20. Yu.A. Kocherzhinskii, O.G. Kulik, E.A. Shishkin, and L.M. Yupko, Differential Thermal Analysis of Silicides of Vanadium, Zirconium, Niobium, Tantalum and Tungsten, Proceedings of 4th International Conference on Thermal Analysis, I. Buzas, Ed., Heyden, London, 1975, p 425-432

    Google Scholar 

  21. Yu.A. Kocherzhinskii, O.G. Kulik, and E.A. Shishkin, Phase Diagram of the Tantalum-Silicon System, Dokl. Chem., 1981, 261(1), p 106-108

    Google Scholar 

  22. M.E. Schlesinger, The Si-Ta (Silicon-Tantalum) System, J. Phase Equilib., 1994, 15, p 90-95

    Article  Google Scholar 

  23. D.A. Robins and I. Jenkins, Structural Investigations on Silicides, Acta Metall., 1955, 3, p 598-604

    Article  Google Scholar 

  24. C.E. Myers and A.W. Searcy, The Dissociation Pressures of Tantalum Silicides, J. Am. Chem. Soc., 1957, 79, p 526-529

    Article  Google Scholar 

  25. S.R. Levine and M. Kolodney, The Free Energy of Formation of Tantalum Silicides Using Solid Oxide Electrolytes, J. Electrochem. Soc., 1969, 116, p 1420-1424

    Article  Google Scholar 

  26. A.K. Niessen and F.R. de Boer, The Enthalpy of Formation of Solid Borides, Carbides, Nitrides, and Phosphides of the Transition and Noble Metals, J. Less-Common Met., 1981, 82, p 75-80

    Article  Google Scholar 

  27. R. Kieffer, F. Benesovsky, and E. Gallistl, Contribution to the System Tungsten-Silicon, Z. Metallkd., 1952, 43, p 284-291

    Google Scholar 

  28. V.A. Maksimov and P.I. Shamrai, The Tungsten-Silicon System, Izv. Akad. Nauk SSSR, Neorg. Mater., 1969, 5, p 1136-1137

    Google Scholar 

  29. Yu.A. Kocherzhinskii, O.G. Kulik, E.A. Shishkin, and L.W. Yupko, Phase Diagram of the Tungsten-Silicon System, Dokl. Akad. Nauk SSSR, 1973, 212, p 642-643

    Google Scholar 

  30. S.V.N. Naidu, A.M. Sriramamurthy, and P.R. Rao, The Si-W (Silicon-Tungsten) System, J. Alloy Phase Diagrams, 1989, 5, p 149-158

    Google Scholar 

  31. A.W. Searcy, Predicting the Thermodynamic Stabilities and Oxidation Resistances of Silicide Cermets, J. Am. Ceram. Soc., 1957, 40, p 431-435

    Article  Google Scholar 

  32. T.G. Chart, Thermodynamic Properties of the Tungsten-Silicon and Chromium-Silicon Systems, Met. Sci., 1975, 9, p 504-509

    Google Scholar 

  33. R.J. Kematick, Vaporization Thermodynamics of the Tungsten Silicides, J. Alloys Compd., 1993, 202, p 225-229

    Article  Google Scholar 

  34. H. Fujiwara, Y. Ueda, A. Awasthi, N. Krishnamurthy, and S.P. Garg, Determination of the Standard Free Energies of Formation for Tungsten Silicides by EMF Measurements Using Lithium Silicate Liquid Electrolyte, J. Alloys Compd., 2005, 391, p 307-312

    Article  Google Scholar 

  35. A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15, p 317-425

    Article  Google Scholar 

  36. O. Redlich and A. Kister, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Ind. Eng. Chem., 1948, 40, p 345-348

    Article  Google Scholar 

  37. B. Sundman, B. Jansson, and J.-O. Andersson, The Thermo-Calc Databank System, CALPHAD, 1985, 9, p 153-190

    Article  Google Scholar 

  38. P.B. Fernandes, G.C. Celho, F. Ferreira, C.A. Nunes, and B. Sundman, Thermodynamic Modeling of the Nb-Si System, Intermetallics, 2002, 10, p 993-999

    Article  Google Scholar 

  39. G. Shao, Thermodynamic Modeling of the Cr-Nb-Si System, Intermetallics, 2005, 13, p 69-78

    Article  Google Scholar 

  40. Y. Liu, G. Shao, and P. Tsakiropoulos, Thermodynamic Reassessment of the Mo-Si and Al-Mo-Si Systems, Intermetallics, 2000, 8, p 953-962

    Article  Google Scholar 

  41. G.W.C. Kaye and T.H. Laby, Tables of Physical and Chemical Constants, Longman, Essex, England, 1995

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the use of Thermo-Calc and Pandat programs, respectively, provided by Thermo-Calc Software AB (Stockholm Technology Park, Sweden) and CompuTherm LLC (Madison, USA). The authors also thank Drs. S. L. Chen and Y. Yang for helpful discussions. This work was financially supported by the National Natural Science Foundation of China (No. 50772012), the Chinese Ministry of Education through New Century Excellent Academician Supported Project (NCET-06-0086) and the program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, No. IRT0708).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenxia Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Z., Yuan, W., Sun, Y. et al. Thermodynamic Assessment of the Si-Ta and Si-W Systems. J. Phase Equilib. Diffus. 30, 564–570 (2009). https://doi.org/10.1007/s11669-009-9579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-009-9579-x

Keywords

Navigation