Skip to main content
Log in

Effect of Ultrasonic Processing on the Synthesis of Barium Titanyl Oxalate and the Characteristics of the BaTiO3 Powder Prepared from It

  • Published:
Inorganic Materials Aims and scope

Abstract

Barium titanyl oxalate (BTO) with small deviations from stoichiometry has been synthesized by a chemical and a sonochemical method (under ultrasonication). Ultrasonic processing has been shown to reduce the particle size of the resultant BTO powder by about ten times and ensure a nearly spherical shape of the particles. The morphology of barium titanate powders prepared by decomposing the BTO at a temperature of 900°C is similar to that of the parent BTO and independent of stoichiometry. The powders have a barium to titanium ratio Ba/Ti = 1.002 and 0.987. The barium titanate powders synthesized using the sonochemical method contain a smaller amount of residual phases and have a larger specific surface area, smaller crystallite size (~100 nm), and smaller unit-cell parameters than do the powders prepared without ultrasonication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moulson, A.J. and Herbert, J.M., Electroceramics: Materials, Properties, Applications, New York: Wiley, 2003, p.557.

    Book  Google Scholar 

  2. Moure, C. and Peña, O., Recent advances in perovskites: processing and properties, Prog. Solid State Chem., 2015, vol. 43, no. 4, pp. 123–148.

    Article  CAS  Google Scholar 

  3. Pithan, C., Hennings, D., and Waser, R., Progress in the synthesis of nanocrystalline BaTiO3 powders for MLCC, Int. J. Appl. Ceram. Technol., 2005, vol. 2, no. 1, pp. 1–14.

    Article  CAS  Google Scholar 

  4. Chatterjee, S., Stojanovic, B.D., and Maiti, H.S., Effect of additives and powder preparation techniques on PTCR properties of barium titanate, Mater. Chem. Phys., 2003, vol. 78, no. 3, pp. 702–710.

    Article  CAS  Google Scholar 

  5. Nuraje, N. and Su, K., Perovskite ferroelectric nanomaterials, Nanoscale, 2013, no. 5, pp. 8752–8780.

    Article  CAS  Google Scholar 

  6. Lee, S., Randall, C.A., and Liu, Z.-K., Modified phase diagram for the barium oxide–titanium dioxide system for the ferroelectric barium titanate, J. Am. Ceram. Soc., 2007, vol. 90, no. 8, pp. 2589–2594.

    Article  CAS  Google Scholar 

  7. Cho, Y.K., Kang, S.-J.L., and Yoon, D.Y., Dependence of grain growth and grain-boundary structure on the Ba/Ti ratio in BaTiO3, J. Am. Ceram. Soc., 2004, vol. 87, no. 1, pp. 119–124.

    Article  CAS  Google Scholar 

  8. Lee, J.K., Hong, K.-S., and Jang, J.-W., Roles of Ba/Ti ratios in the dielectric properties of BaTiO3 ceramics, J. Am. Ceram. Soc., 2001, vol. 8, no. 9, pp. 2001–2006.

    Google Scholar 

  9. Buscaglia, M.T., Buscaglia, V., Viviani, M., Nanni, P., and Hanuskova, M., Influence of foreign ions on the crystal structure of BaTiO3, J. Eur. Ceram. Soc., 2000, vol. 20, pp. 1997–2007.

    Article  CAS  Google Scholar 

  10. Xue, L.A., Chen, Y., and Brook, RJ., The influence of ionic radii on the incorporation of trivalent dopants into BaTiO3, Mater. Sci. Eng., B, 1988, vol. 1, pp. 193–201.

    Article  Google Scholar 

  11. Shut, V.N., Kostomarov, S.V., and Gavrilov, A.V., PTCR ceramics produced from oxalate-derived barium titanate, Inorg. Mater., 2008, vol. 44, no. 8, pp. 905–910.

    Article  CAS  Google Scholar 

  12. Klubovich, V.V., Shut, V.N., Mozzharov, S.E., and Trublovsky, V.L., PTCR ceramics produced from ultrasound activated barium titanate powders, Inorg. Mater., 2013, vol. 49, no. 11, pp. 1162–1166.

    Article  CAS  Google Scholar 

  13. Fang, T.-T. and Lin, H.-B., Factors affecting the preparation of barium titanyl oxalate tetrahydrate, J. Am. Ceram. Soc., 1989, vol. 72, no. 10, pp. 1899–1906.

    Article  CAS  Google Scholar 

  14. Stockenhuber, M., Mayer, H., and Lercher, J.A., Preparation of barium titanate from oxalates, J. Am. Ceram. Soc., 1993, vol. 76, no. 5, pp. 1185–1190.

    Article  CAS  Google Scholar 

  15. Sáez, V. and Mason, T.J., Sonoelectrochemical synthesis of nanoparticles, Molecules, 2009, vol. 14, no. 10, pp. 4284–4299.

    Article  Google Scholar 

  16. Bang, J.H. and Suslick, K.S., Applications of ultrasound to the synthesis of nanostructured materials, Adv. Mater., 2010, vol. 22, pp. 1039–1059.

    Article  CAS  Google Scholar 

  17. Vuttyvong, S., Niemcharoen, S., Seeharaj, P., Vittayakorn, W.C., and Vittayakorn, N., Sonochemical synthesis of spherical BaTiO3 nanoparticles, Ferroelectrics, 2013, vol. 457, no. 1, pp. 44–52.

    Article  Google Scholar 

  18. Vakhmenina, O.N., Bokman, G.Yu., Kharash, M.Sh., Sherstobitova, L.S., and Irtegov, I.G., RF Patent 2224718, 2004.

  19. Meskin, P.E., Ivanov, V.K., Baranchikov, A.E., Churagulov, B.R., and Tretyakov, Y.D., Ultrasonicallyassisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4 and Ni0.5Zn0.5Fe2O4 powders, Ultrason. Sonochem., 2006, vol. 13, pp. 7–53.

    Article  Google Scholar 

  20. Shut, V.N. and Kostomarov, S.V., Properties of barium titanate powders in relation to the heat treatment of the barium titanyl oxalate precursor, Inorg. Mater., 2012, vol. 48, no. 6, pp. 613–619.

    Article  CAS  Google Scholar 

  21. Yoon, D.-H., Tetragonality of barium titanate powder for a ceramic capacitor application, J. Ceram. Process. Res., 2006, vol. 7, no. 4, pp. 343–354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Shut.

Additional information

Original Russian Text © V.N. Shut, S.E. Mozzharov, V.V. Bobrovskii, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 1, pp. 79–84.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shut, V.N., Mozzharov, S.E. & Bobrovskii, V.V. Effect of Ultrasonic Processing on the Synthesis of Barium Titanyl Oxalate and the Characteristics of the BaTiO3 Powder Prepared from It. Inorg Mater 54, 72–78 (2018). https://doi.org/10.1134/S0020168518010156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518010156

Keywords

Navigation