Skip to main content
Log in

Comparison of the Physicochemical and Electrochemical Properties of Vanadium Oxide-Based Nanomaterials Prepared by Cryochemical Synthesis and Supercritical Drying Technique

  • Published:
Inorganic Materials Aims and scope

Abstract

Vanadium oxide-based nanomaterials have been prepared by cryochemical synthesis (CCS) and supercritical drying (SCD) in n-hexane and acetone. We have performed the first comparative analysis which demonstrates differences in the physicochemical and electrochemical properties of the products, related to the key features of the effect of the CCS and SCD approaches. The nanomaterials prepared from the same precursor using CCS and SCD (in acetone and n-hexane) have been shown to differ in phase composition and morphology. The oxidizing annealing of the resultant aerogels and cryogel at 500°C in air leads to the formation of only one phase: α-V2O5. In all cases except the aerogel prepared using SCD in n-hexane, the crystalline α-V2O5 has a higher discharge capacity in comparison with the unannealed aerogels and cryogel. The highest discharge capacity among the annealed aerogels is offered by the sample prepared using SCD in acetone (255 mAh/g), and the highest discharge capacity among the unannealed materials is offered by the sample prepared using SCD in n-hexane (280 mAh/g). The samples range in energy density from 110 to 640 Wh/kg. The highest energy density is also offered by the aerogel prepared using SCD in n-hexane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marinčić, N., Materials balance in primary batteries. I. Lithium inorganic cells at low discharge rates, J. Appl. Electrochem., 1975, vol. 5, no. 8, pp. 313–318.

    Google Scholar 

  2. Marinčić, N., Materials balance in primary batteries. II. Lithium inorganic batteries at high discharge rates, J. Appl. Electrochem., 1976, vol. 6, no. 1, pp. 51–58.

    Article  Google Scholar 

  3. Whittingham, M.S., Mechanism of reduction of the fluorographite cathode, J. Electrochem. Soc., 1975, vol. 122, no. 4, pp. 526–527.

    Article  CAS  Google Scholar 

  4. Tarascon, J.M. and Armand, M., Issues and challenges facing rechargeable lithium batteries, Nature (London), 2001, vol. 414, pp. 359–367.

    Article  CAS  Google Scholar 

  5. Vincent, C.A., Lithium batteries: a 50-year perspective, 1959–2009, Solid State Ionics, 2000, vol. 134, nos. 1–2, pp. 159–167.

    Article  CAS  Google Scholar 

  6. Peters, J.F., Baumann, M., Zimmermann, B., Braun, J., and Weil, M., The environmental impact of Li-ion batteries and the role of key parameters—a review, Renewable Sustainable Energy Rev., 2017, vol. 67, pp. 491–506.

    Article  CAS  Google Scholar 

  7. Ozawa, K., Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system, Solid State Ionics, 1994, vol. 69, nos. 3–4, pp. 212–221.

    Article  CAS  Google Scholar 

  8. Balakhonov, S.V., Vatsadze, S.Z., and Churagulov, B.R., Effect of supercritical drying parameters on the electrochemical properties of vanadium oxide-based aerogels, Inorg. Mater., 2017, vol. 53, no. 2, pp. 181–184.

    Article  CAS  Google Scholar 

  9. Balakhonov, S.V., Vatsadze, S.Z., and Churagulov, B.R., Effect of supercritical drying parameters on the phase composition and morphology of aerogels based on vanadium oxide, Russ. J. Inorg. Chem., 2015, vol. 60, no. 1, pp. 9–15.

    Article  CAS  Google Scholar 

  10. Whittingham, M.S., Lithium batteries and cathode materials, Chem. Rev., 2004, vol. 104, no. 10, pp. 4271–4302.

    Article  CAS  Google Scholar 

  11. Augustyn, V. and Dunn, B., Vanadium oxide aerogels: nanostructured materials for enhanced energy storage, C. R. Chim., 2010, vol. 13, nos. 1–2, pp. 130–141.

    Article  CAS  Google Scholar 

  12. Kratkii spravochnik fiziko-khimicheskikh velichin (Concise Handbook of Physicochemical Quantities), Ravdel’, A.A. and Ponomareva, A.M., Eds., Moscow: Verbum-M, 2009, 11th ed.

  13. Balakhonov, S.V., Efremova, M.V., Ivanov, V.K., and Churagulov, B.R., Facile synthesis of vanadia aerogels with controlled V3+/V4+ ratio, Mater. Lett., 2015, vol. 156, pp. 109–112.

    Article  CAS  Google Scholar 

  14. Tang, P.E., Sakamoto, J.S., Baudrin, E., and Dunn, B., V2O5 aerogel as a versatile host for metal ions, J. Non-Cryst. Solids, 2004, vol. 350, pp. 67–72.

    Article  CAS  Google Scholar 

  15. Tretyakov, Yu.D., Oleinikov, N.N., and Shlyakhtin, O.A., Cryochemical Technology of Advanced Materials, London: Chapman & Hall, 1997.

    Google Scholar 

  16. Gavrilov, A.I., Balakhonov, S.V., and Churagulov, B.R., Synthesis and photocatalytic activity of anatase-based aerogels, Inorg. Mater., 2016, vol. 52, no. 12, pp. 1240–1243.

    Article  CAS  Google Scholar 

  17. Balog, P., Orosel, D., Cancarevic, Z., Schon, C., and Jansen, M., V2O5 phase diagram revisited at high pressures and high temperatures, J. Alloys Compd., 2007, vol. 429, nos. 1–2, pp. 87–98.

    Article  CAS  Google Scholar 

  18. Whittingham, M.S., Chernova, N.A., Roppolo, M., and Dillon, A.C., Layered vanadium and molybdenum oxides: batteries and electrochromics, J. Mater. Chem., 2009, vol. 19, pp. 2526–2552.

    Article  Google Scholar 

  19. Delmas, C., Brethes, S., and Menetrier, M., ω-Li x V2O5—a new electrode material for rechargeable lithium batteries, J. Power Sources, 1991, vol. 34, pp. 113–118.

    Article  CAS  Google Scholar 

  20. Asl, N.M., Kim, J.-H., Lee, W.C., Liu, Z., Lu, P., and Kim, Y., A new chemical route for the synthesis of β′-Li x V2O5 for use as a high performance cathode, Electrochim. Acta, 2013, vol. 105, pp. 403–411.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Balakhonov.

Additional information

Original Russian Text © S.V. Balakhonov, P.V. Teben’kov, O.A. Brylev, B.R. Churagulov, 2018, published in Neorganicheskie Materialy, 2018, Vol. 54, No. 1, pp. 66–72.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakhonov, S.V., Teben’kov, P.V., Brylev, O.A. et al. Comparison of the Physicochemical and Electrochemical Properties of Vanadium Oxide-Based Nanomaterials Prepared by Cryochemical Synthesis and Supercritical Drying Technique. Inorg Mater 54, 60–65 (2018). https://doi.org/10.1134/S0020168518010016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168518010016

Keywords

Navigation