Skip to main content
Log in

Role of Mg2+, Sr2+, and F ions in octacalcium phosphate crystallization

  • Published:
Inorganic Materials Aims and scope

Abstract

We have synthesized octacalcium phosphate (OCP) in the presence of inorganic additives (magnesium, strontium, and fluoride ions) and studied the composition, morphology, thermal stability, and dynamic dissolution of the samples thus obtained. It has been shown that, in addition to OCP, magnesium and strontium ions favor the formation of brushite and hydroxyapatite (HA), whereas fluoride ions favor the formation of HA and fluorohydroxyapatite (FHA). We have proposed a process for the preparation of powder materials whose resorption kinetics in corrosive liquid media are corrected by adding dopants capable of activating the dissolution process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Izmailov, R.R., Golovanova, O.A., Tserikh, Yu.V., et al., Crystallization specifics of carbonate-hydroxyapatite in the presence of strontium-containing agent, Russ. J. Inorg. Chem., 2016, vol. 61, no. 7, pp. 817–821.

    Article  CAS  Google Scholar 

  2. Gerk, S.A., Golovanova, O.A., and Sharkeev, Yu.P., Synthesis of a two-phase nanopowder from prototype human synovial fluid and the use of the nanopowder for the preparation of coatings on titanium plates, Inorg. Mater., 2016, vol. 52, no. 9, pp. 955–961.

    Article  CAS  Google Scholar 

  3. Gurin, A.N., Komlev, V.S., Fadeeva, I.V., and Barinov, S.M, Octacalcium phosphate: a precursor for biological mineralization and promising osteoplastic material, Stomatologiya, 2010, no. 4, pp. 65–70.

    Google Scholar 

  4. Izmailov, R.R. and Golovanova, O.A., Adhesive and morphological characteristics of carbonate hydroxyapatite prepared from a model human synovial fluid on titanium alloys, Inorg. Mater., 2014, vol. 50, no. 6, pp. 592–598.

    Article  CAS  Google Scholar 

  5. Komlev, V.S., Barinov, S.M., Bozo, I.I., et al. Bioceramics composed of octacalcium phosphate demonstrate enhanced biological behavior, ACS Appl. Mater. Interfaces, 2014, no. 19, pp. 16 610–16 620.

    Article  Google Scholar 

  6. Eidelman, N. and Brown, W.E., Selective inhibition of crystal growth on octa-calcium phosphate and nonstoichiometric hydroxyapatite by pyrophosphate at physiological concentration, J. Cryst. Growth, 1991, vol. 113, pp. 643–652.

    Article  CAS  Google Scholar 

  7. Brown, W.E., Eidelman, N., and Tomazic, B., Octacalcium phosphate as a precursor in biomineral formation, Adv. Dent. Res., 1987, vol. 1, no. 2, pp. 306–313.

    Article  CAS  Google Scholar 

  8. Shellis, R.P., Swann, A., Dieppe, P.A., and Marshall, M., Br. J. Rheumatol., 1993, vol. 32, suppl. 2, pp. 44–49.

    Google Scholar 

  9. Moreno, E.C. and Margolis, H.C., Composition of human plaque fluid, J. Dent. Res., 1988, vol. 67, pp. 1181–1189.

    Article  CAS  Google Scholar 

  10. Tatevossian, A. and Gould, C.T., The composition of the aqueous phase in human dental plaque, Arch. Oral Biol., 1976, vol. 21, pp. 319–323.

    Article  CAS  Google Scholar 

  11. Gron, P., The state of calcium and inorganic orthophosphate in human saliva, Arch. Oral Biol., 1973, vol. 18, pp. 1365–1378.

    Article  CAS  Google Scholar 

  12. Suddick, R.P., Hyde, R.J., and Feller, R.P., Salivary water and electrolytes and oral health, The Biologic Basis of Dental Caries, Menaker, L., Ed., New York: Harper & Row, 1980, p. 132.

    Google Scholar 

  13. Aoba, T. and Moreno, E.C., The enamel fluid in the early secretory stage of porcine amelogenesis: chemical composition and saturation with respect to enamel mineral, Calcif. Tissue Int., 1987, vol. 41, pp. 86–94.

    Article  CAS  Google Scholar 

  14. Howell, D.S., Pita, J.C., Marquez, J.F., and Madruga, J.E., Partition of calcium, phosphate, and protein in the fluid phase aspirated at calcifying sites in epiphyseal cartilage, J. Clin. Invest., 1968, vol. 47, pp. 1121–1132.

    Article  CAS  Google Scholar 

  15. Varughese, K. and Moreno, E.C., Crystal growth of calcium apatites in dilute solutions containing fluoride, Calcif. Tissue Int., 1981, vol. 33, pp. 431–439.

    Article  CAS  Google Scholar 

  16. Tung, M.S., Tomazic, B., and Brown, W.E., The effects of magnesium and fluoride on the hydrolysis of octacalcium phosphate, Arch. Oral Biol., 1992, vol. 3, pp. 585–591.

    Article  Google Scholar 

  17. Boanini, E., Gazzano, M., Rubini, K., and Bigi, A., Collapsed octacalcium phosphate stabilized by ionic substitutions, Cryst. Growth Des., 2010, no. 8, pp. 3612–3617.

    Article  Google Scholar 

  18. Morgan, H., Wilson, R.M., Elliott, J.C., Dowker, S.E.P., et al., Preparation and characterisation of monoclinic hydroxyapatite and its precipitated carbonate apatite intermediate, Biomaterials, 2000, vol. 21, pp. 617–627.

    Article  CAS  Google Scholar 

  19. Sampath Kumar, T.S., Manjubala, I., and Gunasekaran, J., Synthesis of carbonated calcium phosphate ceramics using microwave irradiation, Biomaterials, 2000, vol. 21, pp. 1623–1629.

    Article  Google Scholar 

  20. Barinov, S.M. and Komlev, V.S., Osteoinductive ceramic materials for bone tissue restoration: octacalcium phosphate (a review), Materialovedenie, 2009, no. 10, pp. 34–41.

    Google Scholar 

  21. Dorozhkin, S.V., Bioceramics of calcium orthophosphates, Biomaterials, 2010, vol. 31, pp. 1465–1485.

    Article  CAS  Google Scholar 

  22. Solonenko, A.P. and Golovanova, O.A., Hydroxyapatite–brushite mixtures: synthesis and physicochemical characterization, Russ. J. Inorg. Chem., 2013, vol. 58, no. 12, pp. 1420–1427.

    Article  CAS  Google Scholar 

  23. Al’-Zubaidi Asaad Abdulkhussein Mozan, Physicochemical properties of metal-substituted nanocrystalline calcium-deficient hydroxyapatite, Cand. Sci. (Phys.–Math.) Dissertation, Voronezh, 2014, p. 110.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tsyganova.

Additional information

Original Russian Text © A.A. Tsyganova, O.A. Golovanova, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 12, pp. 1292–1301.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsyganova, A.A., Golovanova, O.A. Role of Mg2+, Sr2+, and F ions in octacalcium phosphate crystallization. Inorg Mater 53, 1261–1269 (2017). https://doi.org/10.1134/S0020168517120184

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517120184

Keywords

Navigation