Skip to main content
Log in

Main directions in the development of additive technologies for micron-resolution printing

  • Published:
Inorganic Materials Aims and scope

Abstract

With the development of the key directions in additive technologies at a macrolevel, the proposed paradigm of the fabrication of objects finds application in the fabrication of microscopic structures. In particular, after the two-photon absorption effect was proposed in 1997 as a basis of a new, submicron-resolution printing method, more than a dozen additive manufacturing processes, which enable microstructures to be fabricated from not only metals but also polymers, have been developed in the past two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibson, I., Rosen, D., and Stucker, B., Additive Manufacturing Technologies, New York: Springer, 2015, 2nd ed.

    Book  Google Scholar 

  2. Thompson, M.K., Moroni, G., Vaneker, T., et al., Design for additive manufacturing: trends, opportunities, considerations, and constraints, CIRP Ann.— Manuf. Technol., 2016, vol. 65, p. 737.

    Article  Google Scholar 

  3. Kang, H.-W., Lee, S.J., Ko, I.K., Kengla, C., Yoo, J.J., and Atala, A., A 3D bioprinting system to produce human-scale tissue constructs with structural integrity, Nat. Biotechnol., 2016, vol. 34, p. 312.

    Article  CAS  Google Scholar 

  4. Bos, F., Wolfs, R., Ahmed, Z., and Salet, T., Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing, Virtual Phys. Prototyp., 2016, vol. 11, p. 209.

    Article  Google Scholar 

  5. O’Donnell, J., Kim, M., and Yoon, H.-S., A review on electromechanical devices fabricated by additive manufacturing, J. Manuf. Sci. Eng., 2016, vol. 139, p. 10 801.

    Article  Google Scholar 

  6. Gladman, A.S., Matsumoto, E.A., Nuzzo, R.G., Mahadevan, L., and Lewis, J.A., Biomimetic 4D printing, Nat. Mater., 2016, vol. 15, p. 413.

    Article  Google Scholar 

  7. Studart, A.R., Additive manufacturing of biologicallyinspired materials, Chem. Soc. Rev., 2016, vol. 45, p. 359.

    Article  CAS  Google Scholar 

  8. Boltasseva, A. and Shalaev, V.M., Fabrication of optical negative-index metamaterials: recent advances and outlook, Metamaterials, 2008, vol. 2, pp. 1–17.

    Article  Google Scholar 

  9. Esposito, M. et al., Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies, ACS Photonics, 2014, vol. 17.

    Google Scholar 

  10. Ovsianikov, A., Chichkov, B., Mente, P., et al., Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery, Int. J. Appl. Ceram. Technol., 2007, vol. 4, pp. 22–29.

    Article  CAS  Google Scholar 

  11. Wu, D., Chen, Q.-D., Niu, L.-G., et al., Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices, Lab Chip, 2009, vol. 9, pp. 2391–2394.

    Article  CAS  Google Scholar 

  12. Guo, R., Xiao, S., Zhai, X., et al., Micro lens fabrication by means of femtosecond two photon photopolymerization, Opt. Express, 2006, vol. 14, pp. 810–816.

    Article  CAS  Google Scholar 

  13. Bertagnolli, E., Synthesis of individually tuned nanomagnets for nanomagnet logic by direct write focused electron beam induced deposition, ACS Nano, 2012, online version.

    Google Scholar 

  14. Maruo, S., Nakamura, O., and Kawata, S., Threedimensional microfabrication with two-photonabsorbed photopolymerization, Opt. Lett., 1997, vol. 22, pp. 132–134.

    Article  CAS  Google Scholar 

  15. Saile, V., Wallrabe, U., Tabata, O., and Korvink, J.G., LIGA and Its Applications, Weinheim: Wiley–VCH, 2008.

    Book  Google Scholar 

  16. Gansel, J.K., Thiel, M., and Rill, M.S., Gold helix photonic metamaterial as broadband circular polarizer, Science, 2009, vol. 325, p. 1513.

    Article  CAS  Google Scholar 

  17. Jansson, A., Thornell, G., and Johansson, S., High resolution 3D microstructures made by localized electrochemical deposition of nickel, J. Electrochem. Soc., 2000, vol. 147, p. 1810.

    Article  CAS  Google Scholar 

  18. Wanke, M.C., Lehmann, O., Müller, K., Wen., Q., and Stuke, M., Laser rapid prototyping of photonic microstructures, Science, 1997, vol. 275, p. 1284.

    Article  CAS  Google Scholar 

  19. Exner, H., Horn, M., and Streek, A., Laser micro sintering: a new method to generate metal and ceramic parts of high resolution with sub-micrometer powder, Virtual Phys. Prototyp., 2008, vol. 3, p. 3.

    Article  Google Scholar 

  20. Zhou, X., Hou, Y., and Lin, J., A review on the processing accuracy of two-photon polymerization, AIP Adv., 2015, vol. 5.

    Google Scholar 

  21. DeVoe, R.J., Kalweit, H., Leatherdale, C.A., and Williams, T.R., Voxel shapes in two-photon microfabrication, Soc. Photo-Opt. Ins., 2003, vol. 4797, pp. 310–316.

    Google Scholar 

  22. Lim, T.W. et al., Contour offset algorithm (COA) in nano replication printing (nRP) for fabricating nanoprecision features, Microelectron. Eng., 2005, vol. 77, p. 382.

    Article  CAS  Google Scholar 

  23. Fischer, J. and Wegener, M., Three-dimensional optical laser lithography beyond the diffraction limit, Laser Photonics Rev., 2013, vol. 7, p. 22.

    Article  CAS  Google Scholar 

  24. Wu, D., Wu, S.-Z., Niu, L.G., et al., High numerical aperture microlens arrays of close packing, Appl. Phys. Lett., 2010, vol. 97, p. 031 109.

    Article  Google Scholar 

  25. Cao, Y.Y., Takeyasu, N., Tanaka, T., et al., 3D metallic nanostructure fabrication by surfactant-assisted multiphoton- induced reduction, Small, 2009, vol. 5, pp. 1144–1148.

    CAS  Google Scholar 

  26. Kang, P., Liao, M., Wester, M.R., et al., Three-dimensional biomimetic patterning in hydrogels to guide cellular organization, Adv. Mater., 2012, vol. 24, pp. 2344–2348.

    Article  Google Scholar 

  27. Zhang, B., He, J., Li, X., Xu, F., and Li, D., Micro/nanoscale electrohydrodynamic printing: from 2D to 3D, Nanoscale, 2016, vol. 8, pp. 15376–15388.

    Article  CAS  Google Scholar 

  28. Reneker, D.H., Yarin, A.L., Fong, H., and Koombhongse, S., Bending instability of electrically charged liquid jets of polymer solutions in electrospinning, J. Appl. Phys., 2000, vol. 87, p. 4531.

    Article  CAS  Google Scholar 

  29. Dao Heng, S. et al., Near-field electrospinning, Nano Lett., 2006, vol. 6, pp. 839–842.

    Article  Google Scholar 

  30. Collins, R.T., Harris, M.T., and Basaran, O.A., Breakup of electrified jets, J. Fluid Mech., 2007, vol. 588, pp. 75–129.

    Article  Google Scholar 

  31. Galliker, P., Schneider, J., Eghlidi, H., et al., Direct printing of nanostructures by electrostatic autofocussing of ink nanodroplets, Nat. Commun., 2012, vol. 3, p. 890.

    Article  CAS  Google Scholar 

  32. An, B.W., Kim, K., Lee, H., et al., High-resolution printing of 3D structures using an electrohydrodynamic inkjet with multiple functional inks, Adv. Mater., 2015, vol. 27, pp. 4322–4328.

    Article  CAS  Google Scholar 

  33. Kim, B.H., Onses, M.S., Lim, J.B., et al., High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes, Nano Lett., 2015, vol. 15, pp. 969–973.

    Article  CAS  Google Scholar 

  34. Schneider, J., Rohner, P., Thureja, D., et al., Electrohydrodynamic nanodrip printing of high aspect ratio metal grid transparent electrodes, Adv. Funct. Mater., 2016, vol. 26, pp. 833–840.

    Article  CAS  Google Scholar 

  35. Hochleitner, G., Jüngst, T., and Brown, T.D., Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing, Biofabrication, 2015, vol. 7, p. 035 002.

    Article  Google Scholar 

  36. Ahn, B.Y., Duoss, E.B., and Motala, M.J., Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes, Science, 2009, vol. 323, p. 1590.

    Article  CAS  Google Scholar 

  37. Lewis, J.A., Smay, J.E., Stuecker, J., and Cesarano, J., Direct ink writing of three-dimensional ceramic structures, J. Am. Ceram. Soc., 2006, vol. 89, p. 3599.

    Article  CAS  Google Scholar 

  38. Skylar-Scott, M.A., Gunasekaran, S., and Lewis, J.A., Laser-assisted direct ink writing of planar and 3D metal architectures, Proc. Natl. Acad. Sci., 2016, vol. 113, p. 6137.

    Article  CAS  Google Scholar 

  39. Bohandy, J., Kim, B.F., and Adrian, F.J., Metal deposition from a supported metal film using an excimer laser, J. Appl. Phys., 1986, vol. 60, p. 1538.

    Article  CAS  Google Scholar 

  40. Piqué, A., Auyeung, R.C.Y., Kim, H., Charipar, N.A., and Mathews, S.A., Laser 3D micro manufacturing, J. Phys. D: Appl. Phys., 2016, vol. 49, p. 223 001.

    Article  Google Scholar 

  41. Zenou, M., Sa’ar, A., and Kotler, Z., Laser transfer of metals and metal alloys for digital microfabrication of 3D objects, Small, 2015, vol. 11, p. 4082.

    Article  CAS  Google Scholar 

  42. Röder, T.C. and Köhler, J.R., Physical model for the laser induced forward transfer process, Appl. Phys. Lett., 2012, vol. 100.

    Google Scholar 

  43. Koike, A. and Tomozawa, M.J., Fictive temperature dependence of subcritical crack growth rate of normal glass and anomalous glass, Non-Cryst. Solids, 2006, vol. 352, p. 5522.

    Article  CAS  Google Scholar 

  44. Beerkens, R.G.C., Sulfate decomposition and sodium oxide activity in soda–lime–silica glass melts, J. Am. Ceram. Soc., 2003, vol. 86, p. 1893.

    Article  CAS  Google Scholar 

  45. Kucuk, A., Clare, A.G., and Jones, L.E., Differences between surface and bulk properties of glass melts. I. Compositional differences and influence of volatilization on composition and other physical properties, J. Non-Cryst. Solids, 2000, vol. 261, p. 28.

    Article  CAS  Google Scholar 

  46. Gulbransen, E.A. and Jansson, S.A., The high-temperature oxidation, reduction, and volatilization reactions of silicon and silicon carbide, Oxid. Met., 1972, vol. 4, p. 181.

    Article  CAS  Google Scholar 

  47. Kuznetsov, A.I., Kiyan, R., and Chichkov, B.N., Laser fabrication of 2D and 3D metal nanoparticle structures and arrays, Opt. Express, 2010, vol. 18, p. 21 198.

    Article  CAS  Google Scholar 

  48. Kim, H., Duocastella, M., Charipar, N.A., et al., Laser printing of conformal and multi-level 3D interconnects, Appl. Phys. A: Mater. Sci. Process., 2013, vol. 113.

    Google Scholar 

  49. Wang, J., Auyeung, R., Kim, H., et al., Three-dimensional printing of interconnects by laser direct-write of silver nanopastes, Adv. Mater., 2010, vol. 22, pp. 4462–4466.

    Article  CAS  Google Scholar 

  50. Takai, T., Nakao, H., and Iwata, F., Three-dimensional microfabrication using local electrophoresis deposition and a laser trapping technique, Opt. Express, 2014, vol. 22, pp. 28 109–28 117.

    Article  Google Scholar 

  51. Suryavanshi, A.P. and Yu, M.-F., Probe-based electrochemical fabrication of freestanding Cu nanowire array, Appl. Phys. Lett., 2006, vol. 88, p. 83 103.

    Article  Google Scholar 

  52. Hu, J. and Yu, M.-F., Multi-physics simulation of metal printing at micro/nanoscale using meniscusconfined electrodeposition: effect of environmental humidity, Science, 2010, vol. 329, p. 313.

    Article  CAS  Google Scholar 

  53. Seol, S.K., Kim, D., and Lee, S., Electrodepositionbased 3D printing of metallic microarchitectures with controlled internal structures, Small, 2015, vol. 11, p. 3896.

    Article  CAS  Google Scholar 

  54. Hirt, L. et al., Local surface modification via confined electrochemical deposition with FluidFM, RSC Adv., 2015, vol. 5, pp. 84 517–84 522.

    Article  CAS  Google Scholar 

  55. Momotenko, D., Page, A., Adobes-Vidal, M., and Unwin, P.R., Write–read 3D patterning with a dualchannel nanopipette, ACS Nano, 2016, vol. 10, p. 8871.

    Article  CAS  Google Scholar 

  56. Fan, G., Han, Y., Luo, S., et al., Mechanism for the photoreduction of poly(vinylpyrrolidone) to HAuCl4 and the dominating saturable absorption of Au colloids, Phys. Chem. Chem. Phys., 2016, vol. 18, p. 8993.

    Article  CAS  Google Scholar 

  57. Hirt, L., Reiser, A., Spolenak, R., and Zambelli, T., Additive manufacturing of metal structures at the micrometer scale, Adv. Mater., 2017, vol. 201 604 211, p. 1604211.

    Google Scholar 

  58. Mohammadi-Gheidari, A., Hagen, C.W., and Kruit, P., Multibeam scanning electron microscope: experimental results, J. Vac. Sci. Technol., B, 2010, vol. 28, p. C6G5.

    Article  CAS  Google Scholar 

  59. Van Dorp, W.F., Van Someren, B., Hagen, C.W., et al., Approaching the resolution limit of nanometer-scale electron beam-induced deposition, Nano Lett., 2005, vol. 5, p. 1303.

    Article  Google Scholar 

  60. Fowlkes, J.D., Winkler, R., Lewis, B.B., et al., Simulation- guided 3D nanomanufacturing via focused electron beam induced deposition, ACS Nano, 2016, online version.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Petrov.

Additional information

Original Russian Text © A.K. Petrov, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 12, pp. 1378–1387.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, A.K. Main directions in the development of additive technologies for micron-resolution printing. Inorg Mater 53, 1349–1359 (2017). https://doi.org/10.1134/S0020168517110073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517110073

Keywords

Navigation