Skip to main content

3D Micro- and Nanostructuring by Two-Photon Polymerization

  • Chapter
  • First Online:
High Resolution Manufacturing from 2D to 3D/4D Printing
  • 677 Accesses

Abstract

Additive manufacturing (AM) processes have become a resource-efficient and excellent tool for the easy fabrication of complex components from a wide range of materials. Among these AM processes, two-photon polymerization represents one of the most flexible and high-resolution processes, as it enables the full three-dimensional fabrication of complex structures based on CAD models with a resolution of less than 100 nm. The 2PP process is based on the principle of direct laser writing, which uses the nonlinear two-photon absorption at the focus of a femtosecond laser beam to induce a highly localized polymerization of the photosensitive material. Through computer-controlled three-dimensional guidance of the focus, complex structures can be generated directly in the volume of the material; thus, layer-by-layer fabrication, as in many other methods, is not required.

Due to these properties, 2PP opens up new possibilities in the development of novel and miniaturized devices for different applications, so that it is successfully applied in various research areas today. In this chapter, we would like to introduce both the principle of 2PP and the main application areas. In this context, we will highlight the three largest application areas, namely, optics, microfluidics, and biomedicine, and present interesting results that should give the reader a deep insight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Maruo, S. Kawata, Two-photon-absorbed photopolymerization for three-dimensional microfabrication (1997). https://doi.org/10.1109/memsys.1997.581794

  2. V.F. Paz et al., Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization. J. Laser Appl. 24(4), 042004 (2012). https://doi.org/10.2351/1.4712151

    Article  CAS  Google Scholar 

  3. M. Göppert-Mayer, Über Elementarakte mit zwei Quantensprüngen. Ann. Phys. (1931). https://doi.org/10.1002/andp.19314010303

  4. T. Bückmann et al., Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv. Mater. 24(20), 2710–2714 (2012). https://doi.org/10.1002/adma.201200584

    Article  CAS  Google Scholar 

  5. K. Obata, A. El-Tamer, L. Koch, U. Hinze, B.N. Chichkov, High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP). Light Sci. Appl. 2(DECEMBER), 8–11 (2013). https://doi.org/10.1038/lsa.2013.72

    Article  CAS  Google Scholar 

  6. T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics 10(8), 554–560 (2016). https://doi.org/10.1038/nphoton.2016.121

    Article  CAS  Google Scholar 

  7. T. Gissibl, S. Thiele, A. Herkommer, H. Giessen, Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nat. Commun. 7, 1–9 (2016). https://doi.org/10.1038/ncomms11763

    Article  CAS  Google Scholar 

  8. S. Bianchi, V.P. Rajamanickam, L. Ferrara, E. Di Fabrizio, C. Liberale, R. Di Leonardo, Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics. Opt. Lett. 38(23), 4935 (2013). https://doi.org/10.1364/ol.38.004935

    Article  CAS  Google Scholar 

  9. X. Wang, A.A. Kuchmizhak, E. Brasselet, S. Juodkazis, Dielectric geometric phase optical elements fabricated by femtosecond direct laser writing in photoresists. Appl. Phys. Lett. 110(18) (2017). https://doi.org/10.1063/1.4982602

  10. T. Gissibl, M. Schmid, H. Giessen, Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing. Optica 3(4), 448 (2016). https://doi.org/10.1364/optica.3.000448

    Article  CAS  Google Scholar 

  11. V. Osipov, V. Pavelyev, D. Kachalov, A. Žukauskas, B. Chichkov, Realization of binary radial diffractive optical elements by two-photon polymerization technique. Opt. Express 18(25), 25808 (2010). https://doi.org/10.1364/oe.18.025808

    Article  CAS  Google Scholar 

  12. V. Pavelyev et al., Diffractive optical elements for the formation of ‘light bottle’ intensity distributions. Appl. Opt. 51(18), 4215–4218 (2012). https://doi.org/10.1364/AO.51.004215

    Article  Google Scholar 

  13. V. Pavelyev, V. Osipov, D. Kachalov, B. Chichkov, Diffractive optical elements with radial four-level microrelief fabricated by two-photon polymerization. Opt. Commun. 286(1), 368–371 (2013). https://doi.org/10.1016/j.optcom.2012.07.116

    Article  CAS  Google Scholar 

  14. Y.-H. Yu, Z.-N. Tian, T. Jiang, L.-G. Niu, B.-R. Gao, Fabrication of large-scale multilevel phase-type Fresnel zone plate arrays by femtosecond laser direct writing. Opt. Commun. 362, 69–72 (2016). https://doi.org/10.1016/j.optcom.2015.08.039

    Article  CAS  Google Scholar 

  15. V. Osipov, L.L. Doskolovich, E.A. Bezus, W. Cheng, A. Gaidukeviciute, B. Chichkov, Fabrication of three-focal diffractive lenses by two-photon polymerization technique. Appl. Phys. A Mater. Sci. Process. 107(3), 525–529 (2012). https://doi.org/10.1007/s00339-012-6903-9

    Article  CAS  Google Scholar 

  16. U. Hinze et al., Additive manufacturing of a trifocal diffractive-refractive lens. Opt. Commun. 372, 235–240 (2016). https://doi.org/10.1016/j.optcom.2016.04.029

    Article  CAS  Google Scholar 

  17. T.P. Xiao et al., Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing. ACS Photonics 3(5), 886–894 (2016). https://doi.org/10.1021/acsphotonics.6b00066

    Article  CAS  Google Scholar 

  18. C.W. Lee, S. Pagliara, U. Keyser, J.J. Baumberg, Perpendicular coupling to in-plane photonics using arc waveguides fabricated via two-photon polymerization. Appl. Phys. Lett. 100(17), 2012–2015 (2012). https://doi.org/10.1063/1.4704358

    Article  CAS  Google Scholar 

  19. N. Lindenmann et al., Photonic waveguide bonds – A novel concept for chip-to-chip interconnects. Opt. InfoBase Conf. Pap., 9–11 (2011). https://doi.org/10.1364/ofc.2011.pdpc1

  20. N. Lindenmann et al., Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express 20(16), 17667 (2012). https://doi.org/10.1364/oe.20.017667

    Article  CAS  Google Scholar 

  21. N. Lindenmann et al., Connecting silicon photonic circuits to multicore fibers by photonic wire bonding. J. Lightwave Technol. 33(4), 755–760 (2015). https://doi.org/10.1109/JLT.2014.2373051

    Article  CAS  Google Scholar 

  22. M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, W. Pernice, Hybrid 2D-3D optical devices for integrated optics by direct laser writing. Light Sci. Appl. 3(December 2013), 1–9 (2014). https://doi.org/10.1038/lsa.2014.56

    Article  CAS  Google Scholar 

  23. L. Amato, Y. Gu, N. Bellini, S.M. Eaton, G. Cerullo, R. Osellame, Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip. Lab Chip 12(6), 1135–1142 (2012). https://doi.org/10.1039/c2lc21116e

    Article  CAS  Google Scholar 

  24. F. Perrucci et al., Optimization of a suspended two photon polymerized microfluidic filtration system. Microelectron. Eng. 195, 95–100 (2018). https://doi.org/10.1016/j.mee.2018.04.001

    Article  CAS  Google Scholar 

  25. T.W. Lim et al., Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length. Lab Chip 11(1), 100–103 (2011). https://doi.org/10.1039/c005325m

    Article  CAS  Google Scholar 

  26. D. Wu, S.Z. Wu, J. Xu, L.G. Niu, K. Midorikawa, K. Sugioka, Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: The concept of ship-in-a-bottle biochip. Laser Photonics Rev. 8(3), 458–467 (2014). https://doi.org/10.1002/lpor.201400005

    Article  CAS  Google Scholar 

  27. Y.J. Liu et al., Three-dimensional passive micromixer fabricated by two-photon polymerization for microfluidic mixing. Sensors Mater. 26(2), 39–44 (2014). https://doi.org/10.18494/sam.2014.939

    Article  Google Scholar 

  28. I.A. Paun et al., Laser-direct writing by two-photon polymerization of 3D honeycomb-like structures for bone regeneration. Biofabrication 10(2) (2018). https://doi.org/10.1088/1758-5090/aaa718

  29. J.A. Crowe et al., Development of two-photon polymerised scaffolds for optical interrogation and neurite guidance of human iPSC-derived cortical neuronal networks. Lab Chip 20(10), 1792–1806 (2020). https://doi.org/10.1039/C9LC01209E

    Article  CAS  Google Scholar 

  30. A. Koroleva et al., In vitro development of human iPSC-derived functional neuronal networks on laser-fabricated 3D scaffolds. ACS Appl. Mater. Interfaces 13(7), 7839–7853 (2021). https://doi.org/10.1021/acsami.0c16616

    Article  CAS  Google Scholar 

  31. A. El-Tamer et al., Development of in vitro 3D brain models on laser fabricated scaffolds. Trans. Addit. Manuf. Meets Med. 3(1), 532–532 (2021). https://doi.org/10.18416/AMMM.2021.2109532

    Article  Google Scholar 

  32. A. Koroleva et al., Two-photon polymerization-generated and micromolding-replicated 3D scaffolds for peripheral neural tissue engineering applications. Biofabrication 4(2) (2012). https://doi.org/10.1088/1758-5082/4/2/025005

  33. A. Koroleva et al., Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique. PLoS One 10(2), 1–18 (2015). https://doi.org/10.1371/journal.pone.0118164

    Article  CAS  Google Scholar 

  34. P.S. Timashev et al., 3D in vitro platform produced by two-photon polymerization for the analysis of neural network formation and function. Biomed. Phys. Eng. Express 2(3) (2016). https://doi.org/10.1088/2057-1976/2/3/035001

  35. E. Käpylä et al., Direct laser writing and geometrical analysis of scaffolds with designed pore architecture for three-dimensional cell culturing. J. Micromech. Microeng. 22(11) (2012). https://doi.org/10.1088/0960-1317/22/11/115016

  36. O. Kufelt, A. El-Tamer, C. Sehring, S. Schlie-Wolter, B.N. Chichkov, Hyaluronic acid based materials for scaffolding via two-photon polymerization. Biomacromolecules 15(2), 650–659 (2014). https://doi.org/10.1021/bm401712q

    Article  CAS  Google Scholar 

  37. O. Kufelt, A. El-Tamer, C. Sehring, M. Meißner, S. Schlie-Wolter, B.N. Chichkov, Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization. Acta Biomater. 18, 186–195 (2015). https://doi.org/10.1016/j.actbio.2015.02.025

    Article  CAS  Google Scholar 

  38. A. Accardo, M.C. Blatché, R. Courson, I. Loubinoux, C. Vieu, L. Malaquin, Two-photon lithography and microscopy of 3D hydrogel scaffolds for neuronal cell growth. Biomed. Phys. Eng. Express 4(2) (2018). https://doi.org/10.1088/2057-1976/aaab93

  39. R.M. Felfel et al., In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization. Biomed. Mater. 11(1) (2016). https://doi.org/10.1088/1748-6041/11/1/015011

  40. J. Mačiulaitis et al., Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography. Biofabrication 7(1), 015015 (2015). https://doi.org/10.1088/1758-5090/7/1/015015

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 951890 (Platforma), Bundesministerium für Wirtschaft und Energie (ZIM KK5366201 KL 1), Federal Ministry of Education and Research with RESPONSE “Partnership for Innovation in Implant Technology”, and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2123 QuantumFrontiers – 390837967.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman El-Tamer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Tamer, A., Surnina, M., Hinze, U., Chichkov, B.N. (2022). 3D Micro- and Nanostructuring by Two-Photon Polymerization. In: Marasso, S.L., Cocuzza, M. (eds) High Resolution Manufacturing from 2D to 3D/4D Printing. Springer, Cham. https://doi.org/10.1007/978-3-031-13779-2_3

Download citation

Publish with us

Policies and ethics