Skip to main content
Log in

Surface modification of zirconia with acid groups

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the effect of surface modification with acids and subsequent heat treatment on the properties of hydrous zirconia. It has been shown that surface modification with phosphate and sulfate groups makes it possible not only to control the phase composition of the heat-treated oxide but also to considerably suppress particle growth. We have discussed the processes involved and shown that, in the initial stages of thermolysis, the process leads to the formation of metastable, tetragonal ZrO2, which transforms into monoclinic zirconia at higher temperatures. Surface modification with phosphoric acid stabilizes tetragonal zirconia up to 850°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boldyrev, V.V., Mechanochemistry and mechanical activation of solids, Russ. Chem. Rev., 2006, vol. 75, no. 3, pp. 203–216.

    Article  Google Scholar 

  2. Yaroslavtsev, A.B., Khimiya tverdogo tela (Solid State Chemistry), Moscow: Nauchnyi Mir, 2009.

    Google Scholar 

  3. Uvarov, N.F., Ionics of nanoheterogeneous materials, Usp. Khim., 2007, vol. 76, no. 5, pp. 454–473.

    Article  Google Scholar 

  4. Yaroslavtsev, A.B., Ion conductivity of composite materials on the base of solid electrolytes and ionexchange membranes, Inorg. Mater., 2012, vol. 48, no. 13, pp. 1193–1209.

    Article  CAS  Google Scholar 

  5. Yaroslavtsev, A.B. and Yampolskii, Y.P., Hybrid membranes containing inorganic nanoparticles, Mendeleev Commun., 2014, vol. 24, pp. 319–326. − XO4n

    Article  CAS  Google Scholar 

  6. Rodgers, M.P., Shi, Zh., and Holdcroft, S., Transport properties of composite membranes containing silicon dioxide and Nafion, J. Membr. Sci., 2008, vol. 325, pp. 346–356.

    Article  CAS  Google Scholar 

  7. Di Noto, V., Gliubizzi, R., Negro, E., Vittadello, M., and Pace, G., Hybrid inorganic–organic proton conducting membranes based on Nafion and 5 wt % of MxOy (M = Ti, Zr, Hf, Ta and W). Part I. Synthesis, properties and vibrational studies, Electrochim. Acta, 2007, vol. 53, pp. 1618–1627.

    Article  Google Scholar 

  8. Di Noto, V., Lavina, S., Negro, E., Vittadello, M., Conti, F., Piga, M., and Pace, G., Hybrid inorganic–organic proton conducting membranes based on Nafion and 5 wt % of MxOy (M = Ti, Zr, Hf, Ta and W). Part II: Relaxation phenomena and conductivity mechanism, J. Power Sources, 2009, vol. 187, pp. 57–66.

    Article  Google Scholar 

  9. Peighambardoust, S.J., Rowshanzamir, S., and Amjadi, M., Review of the proton exchange membranes for fuel cell applications, Int. J. Hydrogen Energy, 2010, vol. 35, pp. 9349–9384.

    Article  CAS  Google Scholar 

  10. Ahmad, H., Kamarudin, S.K., Hasran, U.A., and Daud, W.R.W., Overview of hybrid membranes for direct-methanol fuel-cell applications, Int. J. Hydrogen Energy, 2010, vol. 35, pp. 2160–2175.

    Article  CAS  Google Scholar 

  11. Novikova, S.A., Safronova, E.Yu., Lysova, A.A., and Yaroslavtsev, A.B., Influence of incorporated nanoparticles on ion conductivity of MF-4SC membrane, Mendeleev Commun., 2010, vol. 20, pp. 156–157.

    Article  CAS  Google Scholar 

  12. Voropaeva, E.Yu., Stenina, I.A., and Yaroslavtsev, A.B., Ion transport in MF-4SC membranes modified with hydrous zirconia, Russ. J. Inorg. Chem., 2008, vol. 53, no. 11, pp. 1677–1680.

    Article  Google Scholar 

  13. Pan, J., Zhang, H., Chen, W., and Pan, M., Nafion–zirconia nanocomposite membranes formed via in situ sol–gel process, Int. J. Hydrogen Energy, 2010, vol. 35, pp. 2796–2801.

    Article  CAS  Google Scholar 

  14. Yaroslavtsev, A.B., Correlation between the properties of hybrid-ion exchange membranes and the nature and dimensions of dopant particles, Nanotechnol. Russ., 2012, vol. 7, nos. 9–10, pp. 437–451.

    Article  Google Scholar 

  15. Yaroslavtsev, A.B., Stenina, I.A., Voropaeva, E.Yu., and Ilyina, A.A., Ion transfer in composite membranes based on MF-4SC incorporating nanoparticles of silica, zirconia, and polyaniline, Polym. Adv. Technol., 2009, vol. 20, pp. 566–570.

    Article  CAS  Google Scholar 

  16. Shalimov, A.S., Novikova, S.A., Stenina, I.A., and Yaroslavtsev, A.B., Ion transport in MF-4SC cationexchange membranes modified with acid zirconium phosphate, Russ. J. Inorg. Chem., 2006, vol. 51, no. 5, pp. 700–705.

    Article  Google Scholar 

  17. Yurova, P.A., Karavanova, Yu.A., and Yaroslavtsev, A.B., Diffusion properties of heterogeneous zirconia-doped membranes with the functionalized surface, Russ. J. Inorg. Chem., 2015, vol. 60, no. 11, pp. 1419–1421.

    Article  CAS  Google Scholar 

  18. Arbizzani, C., Donnadio, A., Pica, M., Sganappa, M., Varzi, A., Casciola, M., and Mastragostino, M., Methanol permeability and performance of Nafion–zirconium phosphate composite membranes in active and passive direct methanol fuel cells, J. Power Sources, 2010, vol. 195, pp. 7751–7756.

    Article  CAS  Google Scholar 

  19. Navarra, M.A., Abbati, C., and Scrosati, B., Properties and fuel cell performance of a Nafion-based, sulfated zirconia-added, composite membrane, J. Power Sources, 2008, vol. 183, pp. 109–113.

    Article  CAS  Google Scholar 

  20. Stenina, I.A., Voropaeva, E.Yu., Veresov, A.G., Kapustin, G.I., and Yaroslavtsev, A.B., Effect of precipitation pH and heat treatment on the properties of hydrous zirconium dioxide, Russ. J. Inorg. Chem., 2008, vol. 53, no. 3, pp. 350–356.

    Article  Google Scholar 

  21. Stenina, I.A., Voropaeva, E.Yu., Brueva, T.R., Sinel’nikov, A.A., Drozdova, N.A., Ievlev, V.M., and Yaroslavtsev, A.B., Heat-treatment induced evolution of the morphology and microstructure of zirconia prepared from chloride solutions during, Russ. J. Inorg. Chem., 2008, vol. 53, no. 6, pp. 842–848.

    Article  Google Scholar 

  22. Stenina, I.A., Il’in, A.B., Kirik, S.D., Zhilyaeva, N.A., Yurkov, G.Yu., and Yaroslavtsev, A.B., Catalytic properties of composite materials based on mesoporous silica and zirconium hydrogen phosphate, Inorg. Mater., 2014, vol. 50, no. 6, pp. 586–591.

    Article  CAS  Google Scholar 

  23. Yaroslavtsev, A.B., Proton conductivity of inorganic hydrates, Russ. Chem. Rev., 1994, vol. 63, no. 5, pp. 429–435.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Stenina.

Additional information

Original Russian Text © D.V. Golubenko, P.A. Yurova, Yu.A. Karavanova, I.A. Stenina, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 10, pp. 1076–1080.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubenko, D.V., Yurova, P.A., Karavanova, Y.A. et al. Surface modification of zirconia with acid groups. Inorg Mater 53, 1053–1057 (2017). https://doi.org/10.1134/S0020168517100077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517100077

Keywords

Navigation