Skip to main content
Log in

Synthesis of calcium phosphate powder from calcium lactate and ammonium hydrogen phosphate for the fabrication of bioceramics

  • Published:
Inorganic Materials Aims and scope

Abstract

A calcium phosphate powder has been synthesized from aqueous 0.25, 0.5, and 1.0 M calcium lactate and ammonium hydrogen phosphate solutions atat a Ca/P = 1, without pH adjusting. According to X-ray diffraction data, the as-synthesized powder consisted of brushite (CaHPO4 · 2H2O) and octacalcium phosphate (Ca8(HPO4)2(PO4)4 · 5H2O). After heat treatment in the range 500–700°C, the powders were gray in color because of the destruction of the reaction by-product. The powders heat-treated in the range 500–700°C consisted largely of γ-Ca2P2O7. The ceramics prepared from the synthesized powders by firing at 1100°C consisted of β-Ca2P2O7 and β-Ca3(PO4)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barinov, S.M., Calcium phosphate-based ceramic and composite materials for medical applications, Usp. Khim., 2010, vol. 79, no. 1, pp. 15–32.

    Article  Google Scholar 

  2. Safronova, T.V. and Putlyaev, V.I., Powder systems for calcium phosphate ceramics, Inorg. Mater., 2017, vol. 53, no. 1, pp. 17–26.

    Article  CAS  Google Scholar 

  3. Ferraz, M.P., Monteiro, F.J., and Manuel, C.M., Hydroxyapatite nanoparticles: a review of preparation methodologies, J. Appl. Biomater. Biomech., 2004, vol. 2, pp. 74–80.

    CAS  Google Scholar 

  4. Uskoković, V. and Uskoković, D.P., Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents, J. Biomed. Mater. Res., Part B: Appl. Biomater., 2011, vol. 96, no. 1, pp. 152–191.

    Article  Google Scholar 

  5. Stepuk, A.A., Veresov, A.G., Putlyaev, V.I., and Tret’yakov, Yu.D., The influence of NO3 , CH3COO, and Cl ions on the morphology of calcium hydroxyapatite crystals, Dokl. Phys. Chem., 2007, vol. 412, no. 1, pp. 11–14.

    Article  CAS  Google Scholar 

  6. Safronova, T.V., Phase composition of ceramic based on calcium hydroxyapatite powders containing byproducts of the synthesis reaction, Glass. Ceram., 2009, vol. 66, nos. 3–4, pp. 136–139.

    Article  CAS  Google Scholar 

  7. Martin, R.I. and Brown, P.W., Phase equilibria among acid calcium phosphates, J. Am. Ceram. Soc., 1997, vol. 80, no. 5, pp. 1263–1266.

    Article  CAS  Google Scholar 

  8. Liu, C., Huang, Y., Shen, W., and Cui, J., Kinetics of hydroxyapatite precipitation at pH 10 to 11, Biomaterials, 2001, vol. 22, pp. 301–306.

    Article  CAS  Google Scholar 

  9. Li, H., Xue, F., Wan, X., Liu, H., Bai, J., and Chu, C., Polyethylene glycol-assisted preparation of beta-tricalcium phosphate by direct precipitation method, Powder Technology, 2016. http://dx.doi.org/10.1016/j.powtec. 2016.05.061

    Google Scholar 

  10. Wu, V.M. and Uskoković, V., Is there a relationship between solubility and resorbability of different calcium phosphate phases in vitro?, Biochim. Biophys. Acta, 2016. http://dx.doi.org/10.1016/j.bbagen.2016.05.022

    Google Scholar 

  11. Barinov, S. and Komlev, V., Calcium Phosphate Based Bioceramics for Bone Tissue Engineering, Zurich: TransTech Publications, 2008.

    Google Scholar 

  12. Safronova, T.V., Knot’ko, A.V., Shatalova, T.B., Evdokimov, P.V., Putlyaev, V.I., and Kostin, M.S., Calcium phosphate ceramic based on powder synthesized from a mixed-anionic solution, Glass Ceram., 2016, vol. 73, nos. 1–2, pp. 25–31.

    Article  CAS  Google Scholar 

  13. Safronova, T.V., Putlyaev, V.I., Kurbatova, S.A., Shatalova, T.B., Larionov, D.S., Kozlov, D.A., and Evdokimov, P.V., Properties of amorphous calcium pyrophosphate powder synthesized via ion exchange for the preparation of bioceramics, Inorg. Mater., 2015, vol. 51, no. 11, pp. 1177–1184.

    Article  CAS  Google Scholar 

  14. Safronova, T.V., Putlyaev, V.I., Avramenko, O.A., Shekhirev, M.A., and Veresov, A.G., Ca-deficient hydroxyapatite powder for producing tricalcium phosphate based ceramics, Glass Ceram., 2011, vol. 68, nos. 1–2, pp. 28–32.

    Article  CAS  Google Scholar 

  15. Safronova, T.V., Putlyaev, V.I., and Shekhirev, M.A., Resorbable calcium phosphates based ceramics, Powder Metall. Met. Ceram., 2013, vol. 52, nos. 5–6, pp. 357–363.

    Article  CAS  Google Scholar 

  16. Safronova, T.V., Putlyaev, V.I., Kazakova, G.K., and Korneichuk, S.A., Biphase CaO–P2O5 ceramic based on powder synthesized from calcium acetate and ammonium hydrophosphate, Glass Ceram., 2013, vol. 70, nos. 1–2, pp. 65–70.

    Article  CAS  Google Scholar 

  17. Putlyaev, V.I., Kukueva, E.V., Safronova, T.V., Ivanov, V.K., and Churagulov, B.R., Features of octacalcium phosphate thermolysis, Refract. Ind. Ceram., 2014, vol. 54, no. 5, pp. 420–424.

    Article  CAS  Google Scholar 

  18. Safronova, T.V., Kuznetsov, A.V., Korneychuk, S.A., Putlyaev, V.I., and Shekhirev, M.A., Calcium phosphate powders synthesized from solutions with [Ca2+]/[PO4 3-] = 1 for bioresorbable ceramics, Cent. Eur. J. Chem., 2009, vol. 7, no. 2, pp. 184–191.

    CAS  Google Scholar 

  19. Safronova, T.V., Mukhin, E.A., Putlyaev, V.I., Knotko, A.V., Evdokimov, P.V., Shatalova, T.B., Filippov, Ya.Yu., Sidorov, A.V., and Karpushkin, E.A., Amorphous calcium phosphate powder synthesized from calcium acetate and polyphosphoric acid for bioceramics application, Ceram. Int., 2017, vol. 43, pp. 1310–1317. http://dx.doi.org/10.1016/j.ceramint.2016.10.085

    Article  CAS  Google Scholar 

  20. Kivrak, N. and Tas, A.C., Synthesis of calcium hydroxyapatite–tricalcium phosphate (HA–TCP) composite bioceramic powders and their sintering behavior, J. Am. Ceram. Soc., 1998, vol. 81, no. 9, pp. 2245–2252.

    Article  CAS  Google Scholar 

  21. Śalósarczyk, A., Stobierska, E., Paszkiewicz, Z., and Gawlicki, M., Calcium phosphate materials prepared from precipitates with various calcium: phosphorus molar ratios, J. Am. Ceram. Soc., 1996, vol. 79, no. 10, pp. 2539–2544.

    Article  Google Scholar 

  22. Zyman, Z., Epple, M., Goncharenko, A., Rokhmistrov, D., Prymak, O., and Loza, K., Thermally induced crystallization and phase evolution in powders derived from amorphous calcium phosphate precipitates with a Ca/P ratio of 1: 1, J. Cryst. Growth, 2016, vol. 450, pp. 190–196.

    Article  CAS  Google Scholar 

  23. Huang, C. and Cao, P., Tuning Ca: P ratio by NaOH from monocalcium phosphate monohydrate (MCPM), Mater. Chem. Phys., 2016, vol. 181, pp. 159–166.

    Article  CAS  Google Scholar 

  24. Solonenko, A.P., Golovanova, O.A., Fil’chenko, M.V., Ishutina, V.S., Leont’eva, N.N., Antonicheva, N.V., Buyal’skaya, K.S., and Savel’eva, G.G., Physicochemical Study of hydroxyapatite–brushite systems prepared by coprecipitation, Vestn. Omsk. Univ., 2012, no. 2, pp. 135–142.

    Google Scholar 

  25. Cheung, H., Tanke, R.S., and Torrence, G.P., Acetic acid, in Ullmann’s Encyclopedia of Industrial Chemistry, New York: Wiley–VCH, 2002. http://dx.doi.org/ 10.1002/14356007.a01_045.pub2.

    Google Scholar 

  26. Williams, R. and Lyman, C., A neutral buffered standard for hydrogen ion work and accurate titrations which can be prepared in one minute, J. Am. Chem. Soc., 1932, vol. 54, no. 5, pp. 1911–1912.

    Article  CAS  Google Scholar 

  27. Bothara, K.G., Part 10.3, buffers, in Inorganic Pharmaceutical Chemistry, Puna: Pragati, 2008.

    Google Scholar 

  28. Sarafanova, L.A., Pishchevye dobavki: entsiklopediya (Food Additives: An Encyclopedia), St. Petersburg: GIORD, 2004.

    Google Scholar 

  29. Seisenbaeva, G.A., Daniel, G., Nedelec, J.M., and Kessler, V.G., Solution equilibrium behind the roomtemperature synthesis of nanocrystalline titanium dioxide, Nanoscale, 2013, vol. 5, no. 8, pp. 3330–3336.

    Article  CAS  Google Scholar 

  30. Lur’e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook of Analytical Chemistry), Moscow: Khimiya, 1971.

    Google Scholar 

  31. Du, X. and Xu, Y., Preparation and electrical properties of an anodized Al2O3–BaTiO3 composite film, J. Am. Ceram. Soc., 2008, vol. 91, no. 7, pp. 2360–2363.

    Article  CAS  Google Scholar 

  32. Demeyer, D.I., Vandekerckhove, P., and Moermans, R., Compounds determining pH in dry sausage, Meat Sci., 1979, vol. 3, no. 3, pp. 161–167.

    Article  CAS  Google Scholar 

  33. Sun, C. and Zhang, X., The influences of the material properties on ceramic micro-stereolithography, Sens. Actuators, A, 2002, vol. 101, no. 3, pp. 364–370.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Safronova.

Additional information

Original Russian Text © T.V. Safronova, V.I. Putlyaev, M.D. Andreev, Ya.Yu. Filippov, A.V. Knotko, T.B. Shatalova, P.V. Evdokimov, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 8, pp. 874–884.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safronova, T.V., Putlyaev, V.I., Andreev, M.D. et al. Synthesis of calcium phosphate powder from calcium lactate and ammonium hydrogen phosphate for the fabrication of bioceramics. Inorg Mater 53, 859–868 (2017). https://doi.org/10.1134/S0020168517080143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517080143

Keywords

Navigation