Skip to main content
Log in

Surface morphology and composition of nanocrystalline MoO2 produced via the thermal decomposition of the MoO2(i-C3H7NHO)2 complex

  • Published:
Inorganic Materials Aims and scope

Abstract

The surface morphology and composition of MoO2 prepared via the low-temperature decomposition of a molybdenum(VI) isopropylhydroxylaminate complex, MoO2(i-C3H7NHO)2, have been studied by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy (XPS). During the sample preparation process for XPS, the molybdenum dioxide, which has the form of nanocrystals, actively reacts with atmospheric oxygen and moisture because of the small particle size of the material. The composition of the surface layer in terms of molybdenum is 5 at % MoO2, 10 at % Mo2O5, and 85 at % MoO3, and the E b(Mo 3d 5/2) binding energy is 230.0, 231.4, and 233.1 eV, respectively. After argon ion etching of the sample surface for 45 s, the surface composition is 52 at % MoO2, 23 at % Mo2O5, and 25 at % MoO3. In addition, there are ~3 carbon atoms per Mo atom. Based on analysis of the structure of the C 2s, 2p valence electron spectra, we assume that the carbon on the sample surface is present as amorphous or nanoparticulate carbon phases. The material studied here does not become charged when exposed to an X-ray beam, which suggests that it is a weak dielectric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Debecker, D.P., Stoyanova, M., Colbeau-Justin, F., Rodemerck, U., Boissière, C., Gaigneaux, E.M., and Sanchez, C., One-pot aerosol route to MoO3–SiO2–Al2O3 catalysts with ordered super microporosity and high olefin metathesis activity, Angew. Chem., Int. Ed., 2012, vol. 51, pp. 2129–2131.

    Article  CAS  Google Scholar 

  2. Yu, J., Ippolito, S.J., Shafiei, M., Dhawan, D., Wlodarski, W., and Kalantar-zadeh, K., Reverse biased Pt/nanostructured MoO3/SiC Schottky diode based hydrogen gas sensors, Appl. Phys. Lett., 2009, vol. 94, paper 013504.

    Google Scholar 

  3. Brezesinski, T., Wang, J., Tolbert, S.H., and Dunn, B., Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors, Nat. Mater., 2010, vol. 9, pp. 146–151.

    Article  CAS  Google Scholar 

  4. Cattin, L., Dahou, F., Lare, Y., Morsli, M., Tricot, R., Houari, S., Mokrani, A., Jondo, K., Khelil, A., Napo, K., and Bernède, J.C., MoO3 surface passivation of the transparent anode in organic solar cells using ultrathin films, J. Appl. Phys., 2009, vol. 105, paper 034507.

    Google Scholar 

  5. Hu, B., Mai, L.Q., Chen, W., and Yang, F., From MoO3 nanobelts to MoO2 nanorods: structure transformation and electrical transport, ACS Nano, 2009, vol. 3, pp. 478–482.

    Article  CAS  Google Scholar 

  6. Gao, F.L., Zhang, L.J., and Huang, S.M., Fabrication horizontal aligned MoO2/single-walled carbon nanotube nanowires for electrochemical supercapacitor, Mater. Lett., 2010, vol. 64, pp. 537–540.

    Article  CAS  Google Scholar 

  7. Xiaohong Sun, Yifeng Shi, Xiangpeng Fang, Huiming Ji, Xiaolei Li, Shu Cai, Chunming Zheng, and Yongsheng Hu, Green and economical synthesis of carboncoated MoO2 nanocrystallites with highly reversible lithium storage capacity, J. Nanosci. Nanotechnol., 2014, vol. 14, pp. 4278–4285.

    Article  CAS  Google Scholar 

  8. Jun H. Ku, Yoon S. Jung, Kyu T. Lee, Chang H. Kim, and Seung M. Oh, Thermoelectrochemically activated MoO2 powder electrode for lithium secondary batteries, J. Electrochem. Soc., 2009, vol. 156, no. 8, pp. A688–A693.

    Article  Google Scholar 

  9. Yongguang Liang, Zonghui Yi, Shuijin Yang, Liqun Zhou, Jutang Sun, and Yunhong Zhou, Hydrothermal synthesis and lithium-intercalation properties of MoO2 nano-particles with different morphologies, Solid State Ionics, 2006, vol. 177, pp. 501–505.

    Article  CAS  Google Scholar 

  10. Zhou, J., Xu, N.-S., Deng, S.Z., Chen, J., She, J.-C., and Wang, Z.-L., Large-area nanowire arrays of molybdenum and molybdenum oxides: synthesis and field emission properties, Adv. Mater., 2003, vol. 15, pp. 1835–1840.

    Article  CAS  Google Scholar 

  11. Ashraf, S., Blackman, C., Hyett, G., and Parkin, I.P., Aerosol assisted chemical vapour deposition of MoO3 and MoO2 thin films on glass from molybdenum polyoxometallate precursors; thermophoresis and gas phase nanoparticle formation, J. Mater. Chem., 2006, vol. 16, pp. 3575–3582.

    Article  CAS  Google Scholar 

  12. Kuok Hau Seng, Guo Dong Du, Li Li, Zhi Xin Chen, Hua Kun Liu, and Zai Ping Guo, Facile synthesis of graphene–molybdenum dioxide and its lithium storage properties, J. Mater. Chem., 2012, vol. 22, pp. 16072–16077.

    Article  Google Scholar 

  13. Lichun Yang, Lili Liu, Yusong Zhu, Xujiong Wang, and Yuping Wu, Preparation of carbon coated MoO2 nanobelts and their high performance as anode materials for lithium ion batteries, J. Mater. Chem., 2012, vol. 22, pp. 13148–13152.

    Article  CAS  Google Scholar 

  14. Beirakhov, A.G., Orlova, I.M., Il’in, E.G., Sakharov, S.G., Goeva, L.V., Churakov, A.V., Surazhskaya, M.D., and Mikhailov, Yu.N., Molybdenum(VI) complexes with N-substituted hydroxylamines, Russ. J. Inorg. Chem., 2013, vol. 58, no. 12, pp. 1446–1451.

    Article  CAS  Google Scholar 

  15. Beirakhov, A.G., Il’in, E.G., Rotov, A.V., Ugolkova, E.A., Efimov, N.N., Minin, V.V., and Gekhman, A.E., Thermal stability and products of decomposition of molybdenum(IV) complex with isopropylhydroxylamine [MoO2(i-C3H7NHO)2], Russ. J. Inorg. Chem., 2016, vol. 61, no. 6, pp. 755–765.

    Article  Google Scholar 

  16. Nefedov, V.N., Rentgenoelektronnaya spektroskopiya khimicheskikh soedinenii (X-ray Photoelectron Spectroscopy of Chemical Compounds), Moscow: Khimiya, 1984.

    Google Scholar 

  17. Baltrusaitis, J., Mendoza-Sanchez, B., Fernandez, V., Veenstra, R., Dukstiene, N., Roberts, A., and Fairley, N., Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model, Appl. Surf. Sci., 2015, vol. 326, pp. 151–161.

    Article  CAS  Google Scholar 

  18. Choi Woon-Seop, XPS study of MoO3 interlayer between aluminum electrode and inkjet-printed zinc tin oxide for thin-film transistor, Trans. Electr. Electron. Mater., 2011, vol. 12, no. 6, pp. 267–270.

    Article  Google Scholar 

  19. Castaneda, S.I., Montero, I., Ripalda, J.M., Dıaz, N., Galan, L., and Rueda, F., X-ray photoelectron spectroscopy study of low-temperature molybdenum oxidation process, J. Appl. Phys., 1999, vol. 85, no. 12, pp. 8415–8418.

    Article  CAS  Google Scholar 

  20. Wan, C., Regmi, Y.N., and Leonard, B.M., Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction, Angew. Chem., 2014, vol. 126, pp. 6525–6528.

    Article  Google Scholar 

  21. Teterin, Yu.A. and Gagarin, S.G., Inner valence molecular orbitals of compounds and the structure of X-ray photoelectron spectra, Usp. Khim., 1996, vol. 65, no. 10, pp. 895–912.

    Article  CAS  Google Scholar 

  22. Teterin, Yu.A. and Teterin, A.Yu., Structure of X-ray photoelectron spectra of lanthanide compounds, Usp. Khim., 2002, vol. 71, no. 5, pp. 403–441.

    Article  Google Scholar 

  23. Shirley, D.A., High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B: Solid State, 1972, no. 5, pp. 4709–4714.

    Article  Google Scholar 

  24. Il’in, E.G., Parshakov, A.S., Teterin, A.Yu., Maslakov, K.I., and Teterin, Yu.A., X-ray photoelectron spectroscopic characterization of the acetylene cyclotrimerization catalyst NbCl2(CnHn) (n = 10–12), Russ. J. Inorg. Chem., 2011, vol. 56, no. 11, pp. 1788–1793.

    Article  Google Scholar 

  25. Il’in, E.G., Parshakov, A.S., Teterin, A.Yu., Maslakov, K.I., and Teterin, Yu.A., X-ray photoelectron study of the MoCl2C30H30 composite, Inorg. Mater., 2011, vol. 47, no. 4, pp. 442–448.

    Article  Google Scholar 

  26. Nemoshkalenko, V.V. and Aleshin, A.G., Elektronnaya spektroskopiya kristallov (Electron Spectroscopy of Crystals), Kiev: Naukova Dumka, 1976.

    Google Scholar 

  27. Zhizhin, E.V., Pudikov, D.A., Rybkin, A.G., Ul’yanov, P.G., and Shikin, A.M., Synthesis and electronic structure of graphene on a nickel film adsorbed on graphite, Phys. Solid State, 2015, vol. 57, no. 9, pp. 1888–1895.

    Article  CAS  Google Scholar 

  28. Oshikawa, K., Nagai, M., and Omi, S., Characterization of molybdenum carbides for methane reforming by TPR, XRD, and XPS, J. Phys. Chem. B, 2001, vol. 105, pp. 9124–9131.

    Article  CAS  Google Scholar 

  29. Scanlon, D.O., Watson Graeme, W., Payne, D.J., Atkinson, G.R., Egdell, R.G., and Law, D.S.L., Theoretical and experimental study of the electronic structures of MoO3 and MoO2, J. Phys. Chem. C, 2010, vol. 114, pp. 4636–4645.

    Article  CAS  Google Scholar 

  30. Band, I.M., Kharitonov, Yu.I., and Trzhaskovskaya, M.B., Photoionization cross sections and photoelectron angular distributions for X-ray line energies in the range 0.132–4.509 keV, targets: 100 ≥ Z ≥ 1, At. Data Nucl. Data Tables, 1979, vol. 23, pp. 443–505.

    Article  CAS  Google Scholar 

  31. Spevack, P.A. and McIntyre, N.S., Raman and XPS investigation of supported molybdenum oxide thin films. 1. Calcination and reduction studies, J. Phys. Chem., 1993, vol. 97, pp. 11020–11030.

    Article  CAS  Google Scholar 

  32. Sosul’nikov, M.I. and Teterin, Yu.A., X-ray photoelectron study of calcium, strontium, barium, and their oxides, Dokl. Akad. Nauk SSSR, 1991, vol. 317, no. 2, pp. 418–421.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Il’in.

Additional information

Original Russian Text © E.G. Il’in, A.G. Beirakhov, Yu.A. Teterin, K.I. Maslakov, A.Yu. Teterin, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 6, pp. 614–625.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Il’in, E.G., Beirakhov, A.G., Teterin, Y.A. et al. Surface morphology and composition of nanocrystalline MoO2 produced via the thermal decomposition of the MoO2(i-C3H7NHO)2 complex. Inorg Mater 53, 602–612 (2017). https://doi.org/10.1134/S002016851706005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851706005X

Keywords

Navigation