Skip to main content
Log in

Thermodynamic properties of p-Sm2Zr2O7

  • Published:
Inorganic Materials Aims and scope

Abstract

The isobaric heat capacity of p-Sm2Zr2O7 (pyrochlore phase) has been determined in the temperature range 10–1400 K using adiabatic, differential scanning, and relaxation calorimetry, and its enthalpy increment, entropy, and reduced Gibbs energy have been calculated with allowance for the contributions of its low-temperature magnetic transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fergus, J.W., Zirconia and pyrochlore oxides for thermal barrier coatings in gas turbine engines, Metall. Mater. Trans. E, 2014, vol. 1, pp. 118–131.

    CAS  Google Scholar 

  2. Wu, J., Wei, X., Padture, N.P., Klemens, P.G., Gell, M., Garcia, E., Miranzo, P., and Osendi, M., Low-thermal-conductivity rare-earth zirconates for potential thermal-barrier-coating application, J. Am. Ceram. Soc., 2002, vol. 85, pp. 3031–3035.

    Article  CAS  Google Scholar 

  3. Zhang, H., Sun, K., Xu, Q., Wang, F., and Liu, L., Thermal conductivity of (Sm1–x Lax)Zr2O7 (x = 0, 0.25, 0.5, 0.75 and 1) oxides for advanced thermal barrier coatings, J. Rare Earths, 2009, vol. 27, no. 2, pp. 222–226.

    Article  Google Scholar 

  4. Wang, J., Pan, W., Xu, Q., Mori, K., and Torigoe, T., Thermal conductivity of the new candidate materials for thermal barrier coatings, Key Eng. Mater., 2005, vols. 280–283, pp. 1503–1506.

    Article  Google Scholar 

  5. Qin, Y., Wang, J., Pan, W., Wan, C., and Qu, Z., Low thermal conductivity ceramics for thermal barrier coatings, Key Eng. Mater., 2007, vols. 336–338, pp. 1764–1766.

    Article  Google Scholar 

  6. Sohn, J.M. and Woo, S.I., The effect of chelating agent on the catalytic and structural properties of Sm2Zr2O7 as a methane combustion catalyst, Catal. Lett., 2002, vol. 79, pp. 45–48.

    Article  CAS  Google Scholar 

  7. Zhang, R., Xu, Q., Pan, W., Wan, C., Qi, L., and Miao, H., Structure and ionic conductivity of Ln2Zr2O7-type rare earth zirconates, Key Eng. Mater., 2007, vols. 336–338, pp. 420–423.

    Google Scholar 

  8. Shlyakhtina, A.V. and Shcherbakova, L.G., New solid electrolytes of the pyrochlore family, Russ. J. Electrochem., 2012, vol. 48, no. 1, pp. 1–25.

    Article  CAS  Google Scholar 

  9. Shlyakhtina, A.V., Kolbanev, I.V., Knotko, A.V., Boguslavskii, M.V., Stefanovich, S.Yu., and Shcherbakova, L.G., Ionic conductivity of Ln2–x Zr2–x O7–x/2, Inorg. Mater., 2005, vol. 41, no. 8, pp. 975–984.

    Article  Google Scholar 

  10. McCauley, R.A. and Hummel, F.A., Luminescence as an indication of distortion in A2 3+B2 4+O7 type pyrochlores, J. Lumin., 1973, vol. 6, pp. 105–115.

    Article  CAS  Google Scholar 

  11. Tuller, H.L., Oxygen ion conduction and structural disorder in conductive oxides, J. Phys. Chem. Solids, 1994, vol. 55, pp. 1393–1404.

    Article  CAS  Google Scholar 

  12. Arsen’ev, P.A., Glushkova, V.B., Evdokimov, A.A., et al., Soedineniya redkozemel’nykh elementov. Tsirkonaty, gafnaty, niobaty, tantalaty, antimonaty (Rare-Earth Compounds: Zirconates, Hafnates, Niobates, Tantalates, and Antimonates), Moscow: Nauka, 1985.

    Google Scholar 

  13. Rushton, M.J.D., Grimes, R.W., Stanek, C.R., and Owens, S., Predicted pyrochlore to fluorite disorder temperature for A2Zr2O7 compositions, J. Mater. Res., 2004, vol. 19, pp. 1603–1604.

    Article  CAS  Google Scholar 

  14. Chiu, C.-W., Lee, Y.-H., Sheu, H.-S., and Kao, H.-C., I. Phase transition and thermal activated ordering of the ions with pyrochlore phase in Ln2Zr2O7 (Ln = Sm, Eu), J. Chin. Chem. Soc., 2010, vol. 57, pp. 925–931.

    Article  CAS  Google Scholar 

  15. Leither, J., Voňka, P., Sedmodubsky, D., and Svoboda, P., Application of the Neumann–Kopp rule for the estimation of heat capacity of mixed oxides, Thermochim. Acta, 2010, vol. 497, pp. 7–13.

    Article  Google Scholar 

  16. Singh, S., Saha, S., Dhar, S.R., Suryanarayanan, R., Sood, A.K., and Revcolevschi, A., Manifestation of geometric frustration on magnetic and thermodynamics properties of pyrochlores Sm2X2O7 (X = Ti, Zr), Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 77, paper 054408.

    Google Scholar 

  17. Kopan, A.R., Gorbachuk, M.P., Lakiza, S.M., and Tishchenko, Y.S., Low-temperature heat capacity of samarium zirconate (Sm2Zr2O7), Powder Metall. Met. Ceram., 2010, vol. 49, pp. 317–323.

    Article  CAS  Google Scholar 

  18. Fabrichnaya, O., Kriegel, M.J., Seidel, J., Savinykh, G., Ogorodova, L.P., Kiseleva, I.A., and Seifert, H.J., Calorimetric investigation of the La2Zr2O7, Nd2Zr2O7, Sm2Zr2O7 and LaYO3 compounds and CALPHAD assessment of the La2O3–Y2O3 system, Thermochim. Acta, 2011, vol. 526, pp. 50–57.

    Article  CAS  Google Scholar 

  19. Gagarin, P.G., Tyurin, A.V., Guskov, V.N., Nikiforova, G.E., Gavrichev, K.S., and Shlyakhtina, A.V., Thermodynamic properties of Dy2O3 ⋅ 2ZrO2 and Ho2O3 ⋅ 2ZrO2 in the range 10–340 K, Inorg. Mater., 2017, vol. 53, no. 1, pp. 60–66.

    Article  Google Scholar 

  20. ICDD PDF2, card no. 01-075-8266.

  21. Popov, V.V., Petrunin, V.F., Korovin, S.A., Menushenkov, A.P., Kashurnikova, O.V., Chernikov, R.V., Yaroslavtsev, A.A., and Zubavichus, Ya.V., Formation of nanocrystalline structures in the Ln2O3–MO2 systems (Ln = Gd, Dy; M = Zr, Hf), Russ. J. Inorg. Chem., 2011, vol. 56, no. 10, pp. 1538–1544.

    Article  CAS  Google Scholar 

  22. Iorish, V.S. and Tolmach, P.I., Procedure and program for spline fitting low-temperature heat capacity data, J. Phys. Chem. (Russian), 1986, vol. 60, pp. 2583–2587.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Guskov.

Additional information

Original Russian Text © P.G. Gagarin, A.V. Tyurin, V.N. Guskov, A.V. Khoroshilov, G.E. Nikiforova, K.S. Gavrichev, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 6, pp. 632–638.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagarin, P.G., Tyurin, A.V., Guskov, V.N. et al. Thermodynamic properties of p-Sm2Zr2O7 . Inorg Mater 53, 619–625 (2017). https://doi.org/10.1134/S0020168517060048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517060048

Keywords

Navigation