Skip to main content
Log in

Low-temperature heat capacity of samarium zirconate (Sm2Zr2O7)

  • Physicochemical Materials Research
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The heat capacity of Sm2Zr2O7 is investigated for the first time over a temperature range of 60–300 K by adiabatic calorimetry. The values of heat capacity, entropy, enthalpy, and reduced Gibbs energy are determined in standard conditions: C° p (298.15 K) = 236.21 ± 0.94 J ⋅ mol.−1 ⋅ K−1; S°(298.15 K) = 247.3 ± 2 J ⋅ mol.−1 ⋅ K−1; Φ′(298.15 K) = 114.9 ± 1.7 J ⋅ mol.−1⋅ K−1; H°(298.15 K) − H° (0 K) = 39,479 ± 197 J ⋅ mol.−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Povarennykh, Crystallochemical Classification of Minerals [in Russian], Naukova Dumka, Kiev (1966), p. 547.

    Google Scholar 

  2. J. Wu, X. Wei, N. P. Padture, et al., “Low-thermal-conductivity rare-earth zirconates for potential thermalbarrier-coating applications,” J. Am. Ceram. Soc., 85, No. 12, 3031–3035 (2002).

    Article  CAS  Google Scholar 

  3. Z.-G. Liu, J.-H. Ouyang, Y. Zhou, et al., “Influence of ytterbium- and samarium-oxides codoping on structure and thermal conductivity of zirconate ceramics,” J. Eur. Ceram. Soc., 29, No. 4, 647–652 (20090.

    Article  CAS  Google Scholar 

  4. J. Hong-song, X. Qiang, W. Fu-Shi, et al., “Preparation and thermophysical properties of (Sm0.5La0.5)2Zr2O7 and (Sm0.5La0.5)2 (Zr0.8Ce0.2)2O7 ceramics for thermal barrier coatings,” J. All. Compd., 475, No. 1–2, 624–628 (2009).

    Article  Google Scholar 

  5. J. M. Sohn, M. R. Kim, and S. I. Woo, “The catalytic activity and surface characterization of Ln2B2O7 (Ln–Sm, Eu, Gd and Tb; B–Ti or Zr) with pyrochlore structure as novel CH4 combustion catalyst,” Catalysis Today, 83, 289–297 (2003).

    Article  CAS  Google Scholar 

  6. A. Navrotsky, “Thermochemical insights into refractory ceramic materials based on oxides with large tetravalent cations,” J. Mater. Chem., 15, 1883–1890 (2005).

    Article  CAS  Google Scholar 

  7. S. Lutique, D. Staicu, R. J. M. Konings, et al., “Zirconate pyrochlore as transmutation target: thermal behavior and radiation resistance against fission fragment impact,” J. Nucl. Mater., 319, 59–64 (2003).

    Article  CAS  ADS  Google Scholar 

  8. M. Bolech, E. H. P. Cordfunke, A. C. G. van Genderen, et al., “The heat capacity and derived thermodynamic functions of La2Zr2O7 and Ce2Zr2O7 from 4 to 1000 K,” J. Phys. Chem. Sol., 58, No. 3, 433–439 (1997).

    Article  CAS  ADS  Google Scholar 

  9. S. Lutique, P. Javorsky, R. J. M. Konings, et al., “Low temperature heat capacity of Nd2Zr2O7 pyrochlore,” J. Chem. Therm., 35, 955–965 (2003).

    Article  CAS  Google Scholar 

  10. S. Lutique, P. Javorsky, R. J. M. Konings, et al., “The low-temperature heat capacity of some lanthanide zirconates,” J. Chem. Therm., 36, 609–618 (2004).

    Article  CAS  Google Scholar 

  11. K. Popa, R. J. M. Konings, F. Wastin, et al., “A re-evaluation of the heat capacity of cerium zirconate (Ce2Zr2O7),” J. Phys. and Chem. Sol., 69, 70–75 (2008).

    Article  CAS  ADS  Google Scholar 

  12. S. Lutique, R. J. M. Konings, V. V. Rondinella, et al., “The thermal conductivity of Nd2Zr2O7 pyrochlore and the thermal behavior of pyrochlore-based inert matrix fuel,” J. All. Compd., 352, 1–5 (2003).

    Article  CAS  Google Scholar 

  13. D. Sedmidubsky, O. Benes, and R. J. M. Konings, “High temperature heat capacity of Nd2Zr2O7 and La2Zr2O7 pyrochlores,” J. Chem. Thermodynamics, 37, 1098–1103 (2005).

    Article  CAS  Google Scholar 

  14. Ch. Wang, M. Zinkevich, and F. Aldinger, “Experimental investigation and thermodynamic modeling of the ZrO2–SmO1.5 system,” J. Am. Ceram. Soc., 90, No. 7, 2210–2219 (2007).

    Article  CAS  Google Scholar 

  15. M. Perez-Y-Jorba, “Zirconia–rare earth oxides systems,” Ann. Chim. (Paris), 7, No. 7, 479–511 (1962).

    Google Scholar 

  16. A. Rouanet, “Contribution a l’etude des systems zirconia-oxydes des lanthanides au voisinage de la fusion: Memoire de these,” Rev. Int. Hautes Temp. Refract., 8, No. 2, 161–180 (1971).

    CAS  Google Scholar 

  17. A. S. Bolgar, N. P. Gorbachuk, A. V. Blinder, and N. V. Moiseev, “Thermodynamic characteristics of lanthanum silicide and disilicide at low temperatures,” Zh. Fiz. Khim., 70, No. 7, 1185–1189 (1996).

    CAS  Google Scholar 

  18. Procedure for Certification of Facilities for Determining the Specific Heat Capacity and Specific Enthalpy of Solids [in Russian], Izd. Stand., Moscow (1978), p. 19.

  19. V. P. Turov, A. S. Bolgar, A. V. Blinder, et al., Heat Capacity of Zirconium Diboride and Molybdenum Monoboride at Low Temperatures [in Russian], No. 3657-V86, Dep. VINITI June 20, 1986, Kiev (1986), p. 14.

  20. J. Leitner, P. Chuchvalec, D. Sedmidubsky, et al., “Estimation of heat capacities of solid mixed oxides,” Thermochimica Acta, 395, 27–46 (2003).

    Article  CAS  Google Scholar 

  21. Zhou Hongming and Yi Danqing, “Effect of kare earth doping on thermo-physical properties of lanthanum zirconate ceramic for thermal barrier coatings,” J. Rare Earths, 26, No. 6, 770–774 (2008).

    Article  Google Scholar 

  22. Z. J. Chen, H. Y. Xiao, X. T. Zu, and L. M. Wang, “Structural and bonding properties of stannate pyrochlores A density functional theory investigation,” Comp. Mat. Sci., 42, 653–658 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Kopan’.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 49, No. 5–6 (473), pp. 84–92, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopan’, A.R., Gorbachuk, M.P., Lakiza, S.M. et al. Low-temperature heat capacity of samarium zirconate (Sm2Zr2O7). Powder Metall Met Ceram 49, 317–323 (2010). https://doi.org/10.1007/s11106-010-9238-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-010-9238-0

Keywords

Navigation