Skip to main content
Log in

Heating-induced transformations of multicomponent alloys prepared by mechanochemical synthesis

  • Published:
Inorganic Materials Aims and scope

Abstract

Multicomponent (Cr, Fe, Co, Ni, Al, Ti, and Nb) powder alloys prepared by milling five- to seven-component equiatomic mixtures of elemental powders in a Fritsch (P-7) planetary mill have been characterized by differential thermal analysis and X-ray diffraction. The results demonstrate that, if the starting mixture contains Al, the BCC solid solution formed as a result of the milling undergoes heating-induced CsCl-type ordering (β-phase). If not only Al but also Ti are present in the starting mixture, further heating causes the β-phase to convert to an L21 phase with the composition (Ni,Co)TiAl. The elements Cr and Fe form a tetragonal σ-phase. The presence of Nb in the starting mixture suppresses the formation of the σ- phase and favors the formation of a hexagonal Laves phase of complex composition: (Fe,Co)CrNb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suryanarayana, C., Mechanical Alloying and Milling, New York: Marcel Dekker, 2004.

    Book  Google Scholar 

  2. Sherif El-Eskandarany, M., Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy, London: Elsevier, 2015.

    Google Scholar 

  3. Tomilin, I.A. and Kaloshkin, S.D., ‘High entropy alloys’—‘semi-impossible’ regular solid solutions?, Mater. Sci. Technol., 2015, vol. 31, no. 10, pp. 1231–1234.

    Article  CAS  Google Scholar 

  4. Murty, B.S., Yeh, J.-W., and Ranganathan, S., High-Entropy Alloys, London: Elsevier, 2014.

    Book  Google Scholar 

  5. Portnoi, V.K., Leonov, A.V., Filippova, S.E., Streletskii, A.N., and Logacheva, A.I., Mechanochemical synthesis and heating-induced transformations of a high-entropy Cr–Fe–Co–Ni–Al–Ti alloy, Inorg. Mater., 2014, vol. 50, no. 12, pp. 1202–1211.

    Article  CAS  Google Scholar 

  6. Portnoi, V.K., Leonov, A.V., Filippova, S.E., Kuznetsov, V.N., Logacheva, A.I., and Gusakov, M.S., Effect of elemental composition on phase formation during milling of multicomponent equiatomic mixtures, Inorg. Mater., 2016, vol. 52, no. 5, pp. 529–536.

    Article  CAS  Google Scholar 

  7. Shelekhov, E.V. and Sviridova, T.A., Programs for X-ray diffraction analysis of polycrystals, Metalloved. Term. Obrab. Met., 2000, no. 8, pp. 16–19.

    Google Scholar 

  8. Langford, J.I., A rapid method for analysing the breadths of diffraction and spectral lines using the Voigt function, J. Appl. Crystallogr., 1978, vol. 11, pp. 10–14.

    Article  CAS  Google Scholar 

  9. El-Eskandarany, M.S., Zhang, W., and Inoue, A., Glass-forming ability and magnetic properties of mechanically solid-state reacted Co–Ti alloy powders, J. Alloys Compd., 2003, vol. 350, pp. 232–245.

    Article  Google Scholar 

  10. Pet’kov, V.V. and Kireev, M.V., Intermediate phases in the system titanium–cobalt, Metallofizika, 1971, vol. 33, pp. 107–115.

    Google Scholar 

  11. JCPDS (Joint Committee on Powder Diffraction Standards) no. 65-4116.

  12. JCPDS no. 16-443.

  13. Butyagin, P.Yu., Critical issues and prospects in mechanochemistry, Usp. Khim., 1996, vol. 63, no. 12, pp. 1031–1043.

    Google Scholar 

  14. Praveen, S., Murty, B.S., and Kottada, R.S., Alloying behavior in multi-component AlCoCrCuFe and NiCo-CrCuFe high entropy alloys, Mater. Sci. Eng., A, 2012, vol. 534, pp. 83–89.

    Article  CAS  Google Scholar 

  15. Medvedeva, N.I., Gornostyrev, Yu.N., Novikov, D.L., Mryasov, O.N., and Freeman, A.J., Ternary site preference energies, sizes misfits and solid solution hardening in NiAl and FeAl, Acta Mater., 1998, vol. 46, no. 10, pp. 3433–3442.

    Article  CAS  Google Scholar 

  16. Bannykh, O.A., Marchukova, I.D., Povarova, K.B., and Shevakin, A.F., Valence-band X-ray photoelectron spectra of the intermetallic phase NiAl doped with Co, Fe, and Mn, Metally, 1994, vol. 6, pp. 144–149.

    Google Scholar 

  17. Alaverdova, N.V., Portnoy, V.K., Kucherenko, L.A., Ruban, A.V., and Bogdanov, V.I., The atomic distribution of alloying addition between sublattices in the intermetallic compounds Ni3Al and NiAl, J. Less-Common. Met., 1988, vol. 139, pp. 273–282.

    Article  Google Scholar 

  18. Ming-Hung Tsai, Kun-Yo Tsai, Che-Wei Tsai, Chi Lee, Chien-Chang Juan, and Jien-Wei Yeh, Criterion for sigma phase formation in Cr-and V-containing high-entropy alloys, Mater. Res. Lett., 2013, vol. 1, no. 4, pp. 207–212.

    Article  Google Scholar 

  19. Mogutnov, B.M., Tomilin, I.A., and Shvartsman, L.A., Termodinamika splavov zheleza (Thermodynamics of Iron Alloys), Moscow: Metallurgiya, 1984.

    Google Scholar 

  20. Anderson, J.-O. and Sundman, B., Thermodynamic properties of the Cr–Fe system, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 1987, vol. 11, no. 1, pp. 83–92.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Portnoi.

Additional information

Original Russian Text © V.K. Portnoi, A.V. Leonov, S.E. Filippova, A.V. Logachev, A.I. Logacheva, M.S. Gusakov, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 4, pp. 435–444.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portnoi, V.K., Leonov, A.V., Filippova, S.E. et al. Heating-induced transformations of multicomponent alloys prepared by mechanochemical synthesis. Inorg Mater 53, 437–446 (2017). https://doi.org/10.1134/S002016851704015X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016851704015X

Keywords

Navigation