Skip to main content
Log in

Structural and thermal characterizations of the solid-state reaction between Ni, Al, and Ti powders during mechanical alloying

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The mixtures of Ni, Al, and Ti elemental powders with nominal compositions Ni-30 at.% Al-10 at.% Ti were mechanically alloyed in a planetary ball mill under argon atmosphere. The structural and morphological changes during high-energy mechanical alloying were investigated by X-ray diffraction and scanning electron microscopy. We have found differences in the kinetics of solid-state reactions which depend on the differences in the individual properties. The final products of the mechanical alloying process were nanocrystalline nickel-rich solid solutions with a mean crystallite sizes in the range of a few nanometers. As a result, the prolonged milling time allows the disordered Ni3(Al,Ti) solid solution to dissociate to the L20-Ni(Al,Ti) phase and L12-Ni3(Al,Ti) phase. Further, it was found that the formation of L20-Ni(Al,Ti) phase was favored when considering the total reaction of the finite quantities of Al and Ti in the presence of an excess of Ni. Calorimetric studies demonstrate the coexistence of overlapping exothermic peaks characteristic of crystallization processes associated with the identified phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Varin R. In: Proceedings of the conference intermetallic matrix alloys,Warsaw. 2000;1.

  2. Zelaya E, Esquivel MR, Schryvers D. Evolution of the phase stability of Ni–Al under low energy ball milling. Powder Technol. 2013;24:1063.

    Article  CAS  Google Scholar 

  3. Wieczorek-Ciurowa K, Gamrat K. NiAl/Ni3Al–Al2O3 composite formation by reactive ball milling. J Therm Anal Calorim. 2005;82:719–24.

    Article  CAS  Google Scholar 

  4. Sukru Y, Kelestemur M. A study on the solid state welding of boron-doped Ni3Al–AlSI 304 stainless steel couple. Mater Lett. 2005;59:1134.

    Article  Google Scholar 

  5. Lee G, Atkinson A, Selcuk A. Development of residual stress and damage in thermal barrier coatings. Surf Therm Technol. 2006;201:3931.

    Article  CAS  Google Scholar 

  6. Ojo O, Ding R, Chaturvedi C. Heat affected zone microfissuring in a laser beam welded directionally solidified Ni3Al-base alloy. Scr Mater. 2006;54:2131.

    Article  CAS  Google Scholar 

  7. Deevi SC, Sikka VK. Nickel and iron aluminides: an overview on properties, processing, and applications. Intermetallics. 1996;4:357.

    Article  CAS  Google Scholar 

  8. Deevi SC, Sikka VK, Liu CT. Processing, properties, and applications of nickel and iron aluminides. Prog Mater Sci. 1997;42:177.

    Article  CAS  Google Scholar 

  9. Jha SC, Ray R, Gaydosh DJ. Dispersoids in rapidly solidified B2 nickel aluminides. Scr Metall. 1989;23:805.

    Article  CAS  Google Scholar 

  10. Jha SC, Whittenberger JD, Ray R. Carbide-dispersion-strengthened B2 NiAl. Mater Sci Eng, A. 1989;119:103.

    Article  Google Scholar 

  11. Esaki H, Tokizane M. Preparation of Ni-50at.% Ti amorphous alloy and Ni3Al intermetallic compound by mechanical alloying. Mater Sci Forum. 1992;88–90:625.

    Article  Google Scholar 

  12. Pabi SK, Murty BS. Mechanism of mechanical alloying in Ni–A1 and Cu–Zn systems. Mater Sci Eng, A. 1996;214:146.

    Article  Google Scholar 

  13. Ruiz-Luna H, Alvarado-Orozco JM, Caceres-Diaz LA, Lopez-Baez I, Moreno-Palmerin J, Espinoza-Beltran FJ, Boldrick MS, Trapaga-Martinez G, Munoz-Saldana J. Structural evolution of B2-NiAl synthesized by high-energy ball milling. J Mater Sci. 2013;48:265–72.

    Article  CAS  Google Scholar 

  14. Liu E, Jia J, Bai Y, Wang W, Gao Y. Study on preparation and mechanical property of nanocrystalline NiAl intermetallic. Mater Des. 2014;53:596–601.

    Article  CAS  Google Scholar 

  15. Hwang SJ, Nash P, Dollar M, Dymek S. The production of intermetallics based on NiAl by mechanical alloying. Mater Sci Forum. 1992;88–90:611.

    Article  Google Scholar 

  16. Yang R, Saunders N, Leake AJ, Cahn RW. Equilibria and microstructural evolution in the β/β′/γ′ region of the Ni–Al–Ti system: modelling and experiment. Acta Metall Mater. 1992;40:1553.

    Article  CAS  Google Scholar 

  17. Hsiung LC, Bhadeshia HKDH. Thermodynamically stable β[Ni(AI, Ti)]-β′ [Ni2AlTi]-γ′[Ni3(Al, Ti)] metal-metal composites. Metall Trans A. 1995;26:1895.

    Article  Google Scholar 

  18. Sheu HH, Hsiung LC, Sheu JR. Synthesis of multiphase intermetallic compounds by mechanical alloying in Ni–Al–Ti system. J Alloys Compd. 2009;469:483.

    Article  CAS  Google Scholar 

  19. Saud SN, Hamzah E, Abubakar T, Zamri M, Tanemura M. Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu–Al–Ni shape memory alloys. J Therm Anal Calorim. 2014;118:111–122. doi:10.1007/s10973-014-3953-6.

    Article  CAS  Google Scholar 

  20. Saud SN, Hamzah E, Abubakar T, Rad RB, Hosseinian R. X-phase precipitation in aging of Cu–Al–Ni–xTi shape memory alloys and its influence on phase transition behavior. J Therm Anal Calorim. 2015;123:377–389. doi:10.1007/s10973-015-4894-4.

    Article  Google Scholar 

  21. Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1.

    Article  CAS  Google Scholar 

  22. Enayati MH, Sadeghian Z, Salehi M, Saidi A. The effect of milling parameters on the synthesis of Ni3Al intermetallic compound by mechanical alloying. Mater Sci Eng, A. 2004;375–377:809.

    Article  Google Scholar 

  23. Moshksar MM, Mirzaee M. Formation of NiAl intermetallic by gradual and explosive exothermic reaction mechanism during ball milling. Intermetallics. 2004;12:1361.

    Article  CAS  Google Scholar 

  24. Eckert J, Holzer JC, Krill CE, Johnson WL. Investigation of nanometer-sized FCC metals prepared by ball milling. Mater Sci Forum. 1992;88–90:505.

    Article  Google Scholar 

  25. Morris DG, Benghalem A. Dislocations, defects and disorder during mechanical milling. Mater Sci Forum. 1995;179–181:59.

    Google Scholar 

  26. Shen TD, Koch CC. The influence of dislocation structure on formation of nanocrystals by mechanical attrition. Mater Sci Forum. 1995;179–181:17.

    Article  Google Scholar 

  27. Ivanov AN, Salimon AI. Influence of stacking fault energy on structural changes during mechanical activation. Metally (Moscow). 1995;5:145–8.

    Google Scholar 

  28. Lutterotti L. MAUD program CPD Newsletter, IUCr. 2000; N°24. http://www.ing.unitn.it/luttero/maud.

  29. Garces JE, Bozzolo G. Determination of structural alloy equilibrium properties from quantum approximate methods. Phys Rev B. 2005;71:134–201.

    Article  Google Scholar 

  30. Baró MD, Suriñach S, Malagelada J, Clavaguera-Mora MT, Gialanella S, Cahn RW. Kinetics of reordering of Ni3Al disordered by ball-milling. Acta Metall Mater. 1993;41:1065.

    Article  Google Scholar 

  31. Khitouni M, Njah N, Gilbon D. The effect of boron on the reordering of Ni3Al powders produced by filing. Scr Mater. 2004;50:77–81.

    Article  CAS  Google Scholar 

  32. Maiti SC, Ghoroi C. Thermo-kinetic analysis of Ni–Al intermetallic phase formation in powder system a case of complex solid–solid reactions. J Therm Anal Calorim. 2015;1–13. doi:10.1007/s10973-015-5171-2.

  33. Krivoroutchko K, Kulik T, Matyja H, Portnoy VK, Fadeeva VI. Solid state reactions in Ni–Al–Ti–C system by mechanical alloying. J Alloys Compd. 2000;308:230–6.

    Article  CAS  Google Scholar 

  34. Azzaza S, Alleg S, Moumeni H, Nemamcha AR, Rehspringer JL, Greneche JM. Magnetic properties of nanostructured ball-milled Fe and Fe50Co50 alloy. J Phys: Condens Matter. 2006;18(31):7257–72.

    CAS  Google Scholar 

  35. Harris SR, Pearson DH, Garland CM, Fultz B. Chemically disordered Ni3Al synthesized by high vacuum evaporation. J Mater Res. 1991;6:2019.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Xavier Fontrodona Gubau for her XRD support and Leila Mahfoudhi from the English Language Unit at the Faculty of Sciences of Sfax (Tunisia) for accepting to proofread and polish the language of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Khitouni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chérif, A., Rekik, H., Escoda, L. et al. Structural and thermal characterizations of the solid-state reaction between Ni, Al, and Ti powders during mechanical alloying. J Therm Anal Calorim 125, 721–727 (2016). https://doi.org/10.1007/s10973-016-5355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5355-4

Keywords

Navigation