Skip to main content
Log in

Synthesis and upconversion luminescence spectra of (Y1–xy Yb x Er y )2O2S solid solutions

  • Published:
Inorganic Materials Aims and scope

Abstract

Sequentially exposing coprecipitated yttrium, ytterbium, and erbium sulfates to flowing H2 at 500–600°C for 6 h and then to flowing H2S at 1000°C for ≤7 h, we obtained single-phase samples of the following solid solutions: (1) (Y0.97Er0.02Yb0.01)2O2S (а = 3.779 Å, с = 6.579 Å), (2) (Y0.94Er0.05Yb0.01)2O2S (а = 3.783 Å, с = 6.572 Å), (3) (Y0.91Er0.07Yb0.02)2O2S (а = 3.775 Å, с = 6.568 Å), (4) (Y0.87Er0.10Yb0.03)2O2S (а = 3.772 Å, с = 6.559 Å), (5) (Y0.82Er0.15Yb0.03)2O2S (а = 3.770 Å, с = 6.545 Å), and (6) (Y0.96Yb0.03-Er0.01)2O2S (a = 3.780 Å, c = 6.580 Å). The observed chemical transformations were accompanied by a transition from powder particles 2–25 μm in size to agglomerates 30–50 μm in size. The upconversion luminescence intensity in the samples was found to have a maximum: 400 (1), 3750 (2), 2100 (3), 1100 (4), and 150 arb. units (5). The presence of (Y0.96Yb0.03Er0.01)2O3 and (Y0.96Yb0.03Er0.01)2S3 as impurity phases in the samples was shown to considerably reduce the luminescence intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suponitskii, Yu.L., Kuz’micheva, G.M., and Eliseev, A.A., Rare-earth oxysulfides, Usp. Khim., 1988, vol. 57, no. 3, pp. 367–384.

    Article  CAS  Google Scholar 

  2. Osseni, S.A., Lechevalier, S., Verest, M., et al., New nanoplatform based on Gd2O2S:Eu3+ core: synthesis, characterization and use for in vitro bio-labelling, J. Mater. Chem., 2011, vol. 21, pp. 18 365–18 372.

    Article  CAS  Google Scholar 

  3. Osseni, S.A., Lechevalier, S., Verest, M., et al., Gadolinium oxysulfide nanoparticles as multimodal imaging agents for T2-weighted MR, X-ray tomography and photoluminescence, Nanoscale, 2014, no. 6, pp. 556–564.

    Article  Google Scholar 

  4. Xin Lu, Liying Yang, Qianli Ma, et al., A novel strategy to synthesize Gd2O2S:Eu3+ luminescent nanobelts via inheriting the morphology of precursor, J. Mater. Sci.: Mater. Electron., 2014, no. 25, pp. 5388–5394.

    CAS  Google Scholar 

  5. Mikhitar’yan, B.V., Luminescence spectra of Gd2O2S–Tb2O2S and Y2O2S–Tb2O2S solid solutions, Cand. Sci. (Phys.–Math.) Dissertation, Stavropol: Sev.-Kavk. Gos. Tekh. Univ., 2007.

    Google Scholar 

  6. Tsitsura, V.N., Simulation of discharge processes in a discrete-cell gas space of a gas-discharge X-ray to visible light converter, Cand. Sci. (Eng.) Dissertation, Tomsk, 2007.

    Google Scholar 

  7. Andreev, O.V., Vysokikh, A.S., and Vaulin, V.G., Sm2S3–Sm2O3 phase diagram, Russ. J. Inorg. Chem., 2008, vol. 53, no. 8, pp. 1320–1324.

    Article  Google Scholar 

  8. Manashirov, O.Ya., Zvereva, E.M., and Lobanov, A.N., Luminescence of (Y1–x Erx)2O2S solid solutions under UV excitation, Inorg. Mater., 2016, vol. 52, no. 2, pp. 186–193.

    Article  CAS  Google Scholar 

  9. Gruzintsev, A.N., Two-photon excitation of anti-Stokes photoluminescence in Y1.80Er0.10Yb0.10O2S, Inorg. Mater., 2014, vol. 50, no. 8, pp. 821–825.

    Article  CAS  Google Scholar 

  10. Georgobiani, A.N., Gutan, V.B., and Manashirov, O.Ya., Synthesis and IR luminescence of Ln2O2S:Yb (Ln = Y, La, Gd) under laser excitation, Bull. Lebedev Phys. Inst., 2010, vol. 37, no. 10, pp. 304–308.

    Article  Google Scholar 

  11. Manashirov, O.Ya., Georgobiani, A.N., Gutan, V.B., et al., Synthesis and IR-excited luminescence of (Y1–x Tmx)2O2S solid solutions, Inorg. Mater., 2013, no. 3, pp. 278–282.

    Article  Google Scholar 

  12. Andreev, O.V., Sal’nikova, E.I., and Yakupov, A.A., Kinetics of La2O2S formation through sulfate exposure to flowing hydrogen, Vestn. Tyumensk. Gos. Univ., 2009, no. 6, pp. 263–267.

    Google Scholar 

  13. Sal’nikova, E.I., Andreev, P.O., and Antonov, S.M., Kinetic diagrams of Ln2O2SO4 transformations in a H2 flow (Ln = La, Pr, Nd, Sm), Russ. J. Phys. Chem. A, 2013, vol. 87, no. 8, pp. 1280–1283.

    Article  Google Scholar 

  14. Andreev, P.O., Sal’nikova, E.I., and Kislitsyn, A.A., Kinetics of the transformation of Ln2O2SO4 into Ln2O2S (Ln = La, Pr, Nd, Sm) in a hydrogen flow, Russ. J. Phys. Chem. A, 2013, vol. 87, no. 9, pp. 1482–1487.

    CAS  Google Scholar 

  15. Andreev, P.O. and Sal’nikova, E.I., RF Patent 2554202, Byull. Izobret., 2015, no. 18.

    Google Scholar 

  16. Andreev, O.V., Sal’nikova, E.I., and Zhuravskii, D.V., Phase formation and evolution of meso- and nanograins in the preparation of the Ln2O2S (Ln = La, Nd, Gd, Dy) oxysulfides from lanthanide sulfates in flowing hydrogen, Vestn. Tyumensk. Gos. Univ., 2010, no. 3, pp. 215–220.

    Google Scholar 

  17. Dirin, D.N., Vasil’ev, R.B., Sokolikova, M.S., and Gaskov, A.M., Synthesis, morphology, and optical properties of colloidal CdTe/CdSe and CdTe/CdS nanoheterostructures based on CdTe tetrapods, Inorg. Mater., 2011, vol. 47, no. 1, pp. 23–28.

    Article  CAS  Google Scholar 

  18. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767

    Google Scholar 

  19. Kuznetsova, Yu.O., Electron excitation transfer in rareearth-containing upconversion nanoparticles, Izv. Samarsk. Nauchn. Tsentra Ross. Akad. Nauk, 2013, vol. 15, no. 4, pp. 112–115.

    Google Scholar 

  20. Biondo, V., Sarvezuk, P.W.C., Ivashita, F.F., et al., Geometric magnetic frustration in RE2O2S oxysulfides (RE = Sm, Eu and Gd), Mater. Res. Bull., 2014, vol. 54, pp. 41–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Sal’nikova.

Additional information

Original Russian Text © P.O. Andreev, E.I. Sal’nikova, O.V. Andreev, Yu.G. Denisenko, I.M. Kovenskii, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 2, pp. 185–191.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, P.O., Sal’nikova, E.I., Andreev, O.V. et al. Synthesis and upconversion luminescence spectra of (Y1–xy Yb x Er y )2O2S solid solutions. Inorg Mater 53, 200–206 (2017). https://doi.org/10.1134/S0020168517020029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517020029

Keywords

Navigation