Skip to main content
Log in

Na5Rb7Sc2(WO4)9: Yb3+, Er3+: Luminescence Properties and Prospects for Non-Contact Thermometry

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Trigonal solid solutions Na5Rb7Sc1.95Yb0.05 – xErx(WO4)9 (x = 0.0025–0.0375) and Na5Rb7Sc2 – 5y-Yb2yEr3y(WO4)9 (y = 0.005–0.015) based on ternary tungstate Na5Rb7Sc2(WO4)9 have been obtained by ceramic technology and their luminescence properties have been studied. Excitation of powders by infrared radiation of the laser module (λex = 980 nm, Pmax = 45 mW/mm2) leads to the appearance of a bright green emission. The highest intensity of the bands at 515–540 nm (2H11/24I15/2), 540–575 nm (4S3/24I15/2), and 645–680 nm (4F9/24I15/2) is observed for sample Na5Rb7Sc1.95Yb0.02Er0.03(WO4)9. For a given composition, the power and temperature dependences of optical characteristics have been studied, a mechanism for energy transfer between optical centers has been proposed, and chromaticity coordinates have been determined. Based on the data obtained, it has been concluded that Na5Rb7Sc1.95Yb0.02Er0.03(WO4)9 can be used as a material for non-contact luminescent thermometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. A. Kaminskii, Laser Photon. Rev. 1, 93 (2007). https://doi.org/10.1002/lpor.200710008

    Article  CAS  Google Scholar 

  2. Y. Yu, S. Wu, X. Zhu, et al., Opt. Mater. 111, 110653 (2021). https://doi.org/10.1016/j.optmat.2020.110653

    Article  CAS  Google Scholar 

  3. L. Zhang, S. Sun, Z. Lin, et al., J. Lumin. 203, 676 (2018). https://doi.org/10.1016/j.jlumin.2018.07.016

    Article  CAS  Google Scholar 

  4. B. Xiao, Y. Huang, L. Zhang, et al., PLoS ONE 7, (2012). https://doi.org/10.1371/journal.pone.0040229

  5. H. Li, L. Zhang, and G. Wang, J. Alloys Compd. 478, 484 (2009). https://doi.org/10.1016/j.jallcom.2008.11.079

    Article  CAS  Google Scholar 

  6. P. Belli, R. Bernabei, Yu. A. Borovlev, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 935, 89 (2019). https://doi.org/10.1016/j.nima.2019.05.014

    Article  CAS  Google Scholar 

  7. A. S. Barabash, P. Belli, R. Bernabei, et al., J. Instrum. 6, P08011 (2011). https://doi.org/10.1088/1748-0221/6/08/P08011

    Article  CAS  Google Scholar 

  8. V. A. Isupov, Ferroelectrics 321, 63 (2005). https://doi.org/10.1080/00150190500259699

    Article  CAS  Google Scholar 

  9. V. A. Isupov, Ferroelectrics 322, 83 (2005). https://doi.org/10.1080/00150190500315574

    Article  CAS  Google Scholar 

  10. C. Lind, Materials 5, 1125 (2012). https://doi.org/10.3390/ma5061125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M. Rahimi-Nasrabadi, S. M. Pourmortazavi, M. R. Ganjali, et al., J. Mater. Sci. Mater. Electron. 27, 12860 (2016). https://doi.org/10.1007/s10854-016-5421-5

    Article  CAS  Google Scholar 

  12. S. Mishra, R. N. P. Choudhary, and S. K. Parida, Ceram. Int. 48, 17020 (2022). https://doi.org/10.1016/j.ceramint.2022.02.257

    Article  CAS  Google Scholar 

  13. O. S. Kaimieva, I. E. Sabirova, E. S. Buyanova, et al., Russ. J. Inorg. Chem. 67, 1348 (2022). https://doi.org/10.1134/S0036023622090054

    Article  CAS  Google Scholar 

  14. S. Muthamizh, R. Suresh, K. Giribabu, et al., J. Alloys Compd. 619, 601 (2015).

    Article  CAS  Google Scholar 

  15. M. Assis, A. C. M. Tello, F. S. A. Abud, et al., Appl. Surf. Sci. 600, 154081 (2022).

    Article  CAS  Google Scholar 

  16. B. Huang, H. Wang, S. Liang, et al., Energy Storage Mater. 32, 105 (2020). https://doi.org/10.1016/j.ensm.2020.07.014

    Article  Google Scholar 

  17. U. Patil, L. Khandare, and D. J. Late, Mater. Sci. Eng. B 284, 115874 (2022). https://doi.org/10.1016/j.mseb.2022.115874

    Article  CAS  Google Scholar 

  18. M. Hosseinpour, H. Abdoos, O. Mirzaee, et al., Ceram. Int. 49, 4722 (2023). https://doi.org/10.1016/j.ceramint.2022.09.362

    Article  CAS  Google Scholar 

  19. S. L. Bravina, N. V. Morozovsky, S. F. Solodovnikov, et al., J. Alloys Compd. 649, 635 (2015). https://doi.org/10.1016/j.jallcom.2015.07.137

    Article  CAS  Google Scholar 

  20. F. Dkhilalli, S. Megdiche Borchani, M. Rasheed, et al., R. Soc. Open Sci. 5, 172214 (2018). https://doi.org/10.1098/rsos.172214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. A. Durairajan, J. Suresh Kumar, D. Thangaraju, et al., Superlattices Microstruct. 93, 308 (2016). https://doi.org/10.1016/j.spmi.2016.03.025

    Article  CAS  Google Scholar 

  22. V. A. Morozov, D. Batuk, M. Batuk, et al., Chem. Mater. 29, 8811 (2017). https://doi.org/10.1021/acs.chemmater.7b03155

    Article  CAS  Google Scholar 

  23. V. Morozov, D. Deyneko, O. Basovich, et al., Chem. Mater. 30, 4788 (2018). https://doi.org/10.1021/acs.chemmater.8b02029

    Article  CAS  Google Scholar 

  24. Ja.-N. Keil, Ch. Paulsen, R. Florian, et al., Dalton Trans. 50, 9225 (2021). https://doi.org/10.1039/d1dt00795e

  25. B. Wei, Zh. Liu, Ch. Xie, et al., J. Mater. Chem. C 3, 12322 (2015). https://doi.org/10.1039/C5TC03165F

    Article  CAS  Google Scholar 

  26. Y. Yang, F. Li, Y. Lu, et al., J. Lumin. 251, 119234 (2022). https://doi.org/10.1016/j.jlumin.2022.119234

    Article  CAS  Google Scholar 

  27. J. Zhang and C. Jin, J. Alloys Compd. 783, 89 (2019). https://doi.org/10.1016/j.jallcom.2018.12.281

    Article  CAS  Google Scholar 

  28. R. Yun, J. He, L. Luo, et al., Ceram. Int. 47, 16062 (2021). https://doi.org/10.1016/j.ceramint.2021.02.180

    Article  CAS  Google Scholar 

  29. Ch. S. Lim, A. Aleksandrovsky, M. Molokeev, et al., J. Solid State Chem. 228, 160 (2015). https://doi.org/10.1016/j.jssc.2015.04.032

    Article  CAS  Google Scholar 

  30. X. Bin, Zh. Lin, L. Zhang, et al., PLoS One. 7, e40631 (2012). https://doi.org/10.1371/journal.pone.0040631

  31. B. M. Van der Ende, L. Aarts, and A. Meijerink, Phys. Chem. Chem. Phys. 11, 11081 (2009). https://doi.org/10.1039/B913877C

    Article  CAS  PubMed  Google Scholar 

  32. A. Khare, J. Alloys Compd. 821, 153214 (2020). https://doi.org/10.1016/j.jallcom.2019.153214

    Article  CAS  Google Scholar 

  33. G. T. Xiang, X. T. Liu, Q. Xia, et al., Talanta 224, 121832 (2021). https://doi.org/10.1016/j.talanta.2020.121832

    Article  CAS  PubMed  Google Scholar 

  34. R. Rafique, S. H. Baek, L. M. T. Phan, et al., Mater. Sci. Eng. C 99, 1067 (2019). https://doi.org/10.1016/j.msec.2019.02.046

    Article  CAS  Google Scholar 

  35. Y. Cun and Z. Xu, et al., Chem. Eng. J. 429, 132333 (2022). https://doi.org/10.1016/j.cej.2021.132333

    Article  CAS  Google Scholar 

  36. C. D. S. Brites, A. Millan, and L. D. Carlos, Handb. Phys. Chem. Rare Earths 49, 339 (2016). https://doi.org/10.1016/bs.hpcre.2016.03.005

    Article  CAS  Google Scholar 

  37. M. Dramićanin, Chapter 6, in Luminescence Thermometry: Methods, Materials, and Applications (Woodhead Publishing Series in Electronic and Optical Materials, Elsevier, 2018). https://doi.org/10.1016/B978-0-08-102029-6.00006-3

  38. Y. Wu, H. Suo, D. He, et al., Mater. Res. Bull. 106, 14 (2018). https://doi.org/10.1016/j.materresbull.2018.05.019

    Article  CAS  Google Scholar 

  39. S. Peng, F. Lai, Z. Xiao, et al., J. Lumin. 242, 118569 (2022). https://doi.org/10.1016/j.jlumin.2021.118569

    Article  CAS  Google Scholar 

  40. L. Chen, K. He, G. Bai, et al., J. Alloys Compd. 846, 156425 (2020). https://doi.org/10.1016/j.jallcom.2020.156425

    Article  CAS  Google Scholar 

  41. J. Zhang, J. Chen, and C. Jin, J. Alloys Compd. 846, 156397 (2020). https://doi.org/10.1016/j.jallcom.2020.156397

    Article  CAS  Google Scholar 

  42. O. A. Lipina, L. L. Surat, A. Yu. Chufarov, et al., Mendeleev Commun. 31, 113 (2021). https://doi.org/10.1016/j.mencom.2021.01.035

    Article  CAS  Google Scholar 

  43. O. A. Lipina, L. L. Surat, A. A. Melentsova, et al., Phys. Solid State 63, 1036 (2021). https://doi.org/10.1134/S1063783421070143

    Article  CAS  Google Scholar 

  44. Ch. S. Lim, V. V. Atuchin, A. S. Aleksandrovsky, et al., Mater. Lett. 181, 38 (2016). https://doi.org/10.1016/j.matlet.2016.05.121

    Article  CAS  Google Scholar 

  45. Y. Zhou, B. Yan, and X.-H. He, J. Mater. Chem. C 2, 848 (2014). https://doi.org/10.1039/c3tc31880j

    Article  CAS  Google Scholar 

  46. A. Jain, Sh. P. Ong, G. Hautier, et al., APL Mater. 1, 011002 (2013). https://doi.org/10.1063/1.4812323

    Article  CAS  Google Scholar 

  47. ICDD PDF-2 Data Base, Cards 01-074-2369, 01-073-2342, 01-089-4691.

  48. H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969). https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  49. Bruker AXS TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data, User’s Manual (Bruker AXS, Karlsruhe, Germany, 2008).

  50. T. S. Spiridonova, S. F. Solodovnikov, M. S. Molokeev, et al., J Solid State Chem. 305, 122638 (2022). https://doi.org/10.1016/j.jssc.2021.122638

    Article  CAS  Google Scholar 

  51. T. S. Spiridonova, A. A. Savina, E. V. Kovtunets, et al., Chimica Techno Acta 8, 20218412 (2021). https://doi.org/10.15826/chimtech.2021.8.4.12

    Article  CAS  Google Scholar 

  52. O. M. Basovich, A. A. Uskova, S. F. Solodovnikov, et al., Vest. Buryats Gos. Univ. Khim. Fiz. 3, 24 (2011).

    Google Scholar 

  53. E. G. Khaikina, S. F. Solodovnikov, O. M. Basovich, et al., Chimica Techno Acta 2, 356 (2015). https://doi.org/10.15826/chimtech.2015.2.4.032

    Article  Google Scholar 

  54. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  55. L. Huang, X. Liu, W. Hu, et al., J. Appl. Phys. 90, 5550 (2001). https://doi.org/10.1063/1.1413494

    Article  CAS  Google Scholar 

  56. S. K. Singh, K. Kumar, and S. B. Rai, Appl. Phys. B: Lasers Opt. 94, 165 (2009). https://doi.org/10.1007/s00340-008-3261-6

    Article  CAS  Google Scholar 

  57. S. K. Singh, A. K. Singh, D. Kumar, et al., Appl. Phys. B: Lasers Opt. 98, 173 (2010). https://doi.org/10.1007/s00340-009-3711-9

    Article  CAS  Google Scholar 

  58. M. Pokhrel, G. A. Kumar, and D. K. Sardar, J. Mater. Chem. A 1, 11595 (2013). https://doi.org/10.1039/C3TA12205K

    Article  CAS  Google Scholar 

  59. S. Georgescu, A. M. Voiculescu, C. Matei, et al., Physica B: Cond. Matter. 413, 55 (2013). https://doi.org/10.1016/j.physb.2012.12.045

    Article  CAS  Google Scholar 

  60. V. Singh, V. K. Rai, K. Al-Shamery, et al., Spectrochim. Acta 108 Part A, 141 (2013). https://doi.org/10.1016/j.saa.2013.01.073

  61. O. A. Lipina, L. L. Surat, A. P. Tyutyunnik, et al., Opt. Mater. 61, 98 (2016). https://doi.org/10.1016/j.optmat.2016.05.031

    Article  CAS  Google Scholar 

  62. M. Pollnau, D. R. Gamelin, S. R. Lüthi, et al., Phys. Rev. B: 61, 3337 (2020).

    Article  Google Scholar 

  63. F. Auzel, C. R. Acad. Sci. 263, 819 (1966).

    Google Scholar 

  64. R. B. Anderson, S. J. Smith, P. S. May, et al., J. Phys. Chem. Lett. 5, 36 (2014). https://doi.org/10.1021/jz402366r

    Article  CAS  PubMed  Google Scholar 

  65. C. S. McCamy, Color Res. Appl. 17, 142 (1992). https://doi.org/10.1002/col.5080170211

    Article  Google Scholar 

  66. K. L. Kelly, J. Opt. Soc. Am. 33, 627 (1943). https://doi.org/10.1364/JOSA.33.000627

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 20-03-00533).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Spiridonova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipina, O.A., Spiridonova, T.S., Baklanova, Y.V. et al. Na5Rb7Sc2(WO4)9: Yb3+, Er3+: Luminescence Properties and Prospects for Non-Contact Thermometry. Russ. J. Inorg. Chem. 68, 529–537 (2023). https://doi.org/10.1134/S0036023623600508

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623600508

Keywords:

Navigation