Skip to main content
Log in

Properties of iron-containing nanohydroxyapatite-based composites

  • Published:
Inorganic Materials Aims and scope

Abstract

The paramagnetic properties of compounds resulting from the synthesis of nanohydroxyapatite in the presence of Fe(III) ions have been studied by electron paramagnetic resonance, Mössbauer spectroscopy, and magnetochemistry. Based on the obtained results on the mechanism of the reaction between an orthophosphoric acid solution and an aqueous calcium hydroxide suspension, we have found conditions for incorporating Fe(III) impurity ions into hydroxyapatite. We have studied samples differing in the sequence in which reagents were mixed and in hydroxyapatite crystallite formation conditions. It has been shown that, in all instances, the composition and properties of the iron-containing phases in the composites depend significantly on both synthesis and heat treatment conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gupta, A.K. and Gupta, M., Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 2005, vol. 26, pp. 3995–4021.

    Article  CAS  Google Scholar 

  2. Salata, O.V., Applications of nanoparticles in biology and medicine, J. Nanobiotechnol., 2004, vol. 2, no. 3, pp. 1–6.

    Google Scholar 

  3. Albanese, A., Tang, P.S., and Chan, W.S., The effect of nanoparticle size, shape, and surface chemistry on biological systems, Annu. Rev. Biomed. Eng., 2012, vol. 14, pp. 1–16.

    Article  CAS  Google Scholar 

  4. Kuzmann, E., Garg, V.K., Oliveira, A.C., et al., Mössbauer study of the effect of pH on Fe valence in ironpolygalacturonate as a medicine for human anaemia, Radiat. Phys. Chem., 2015, vol. 107, pp. 195–198.

    Article  CAS  Google Scholar 

  5. Kaushik, A., Jayant, R.D., Sagar, V., and Nair, M., The potential of magneto-electric nanocarriers for drug delivery, Expert. Opin. Drug. Delivery, 2014, vol. 11, no. 10, pp. 1635–1646.

    Article  CAS  Google Scholar 

  6. Dash, N.A., Ghosal, P.M., Mahipal, Y.K., et al., The use of magnetite nanoparticles in applied medicine, J. Mech. Eng. Res. Devel., 2014, vol. 37, pp. 15–18.

    Google Scholar 

  7. Veiseh, O., Gunn, J.W., and Zhang, M., Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging, Adv. Drug. Deliv. Rev., 2010, vol. 63, pp. 284–304.

    Article  Google Scholar 

  8. Chomouckaa, J., Drbohlavovaa, J., Huskab, D., et al., Magnetic nanoparticles and targeted drug delivering, Pharmacol. Res., 2010, vol. 62, pp. 144–149.

    Article  Google Scholar 

  9. Mahmoudi, M., Sant, S., Wang, B., et al., Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy, Adv. Drug. Deliv. Rev., 2011, vol. 63, pp. 24–46.

    Article  CAS  Google Scholar 

  10. Hergt, R., Dutz, S., Muller, R., and Zeisberger, M., Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy, J. Phys. Condens. Matter, 2006, vol. 18, no. 38, pp. 2919–2934.

    Article  Google Scholar 

  11. Hergt, R., Dutz, S., and Roder, M., Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia, J. Phys. Condens. Matter, 2008, vol. 20, no. 38, pp. 385214–385226.

    Article  Google Scholar 

  12. Laurent, S., Dutz, S., Häfeli, U.O., and Mahmoudi, M., Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles, Adv. Colloid Interface Sci., 2011, vol. 166, pp. 8–23.

    Article  CAS  Google Scholar 

  13. Cuny, L., Pia, M., Gisela, H., et al., Magnetic resonance imaging reveals detailed spatial and temporal distribution of iron-based nanoparticles transported through water-saturated porous media, J. Contam. Hydrol., 2015, vol. 182, pp. 51–62.

    Article  CAS  Google Scholar 

  14. Szpak, A., Kania, G., Skórka, T., et al., Stable aqueous dispersion of superparamagnetic iron oxide nanoparticles protected by charged chitosan derivatives, J. Nanopart. Res., 2013, vol. 15, pp. 1372–1383.

    Article  Google Scholar 

  15. Polikarpov, D., Cherepanov, V., Chuev, M., et al., Mossbauer evidence of 57Fe3O4 based ferrofluid biodegradation in the brain, Hyperfine Interact., 2014, vol. 226, pp. 421–430.

    Article  CAS  Google Scholar 

  16. Li, W.J., Zhou, X.L., Liu, B.L., et al., The effect of nanoparticle on vitrification of porcine GV-stage oocytes, Chin. J. Biomed. Eng., 2013, vol. 32, no. 5, pp. 601–605.

    Google Scholar 

  17. Shimizu, T., Akahane, M., Ueha, T., et al., Osteogenesis of cryopreserved osteogenic matrix cell sheets, Cryobiology, 2013, vol. 66, no. 3, pp. 326–332.

    Article  CAS  Google Scholar 

  18. Xing, Z., Zhang, J., Kong, L., et al., Combination of cryopreserved hydroxyapatite/bone marrow mesenchymal stem cells repairs rabbit radial defects, Chin. J. Tiss. Eng. Res., 2013, vol. 17, no. 25, pp. 4629–4636.

    CAS  Google Scholar 

  19. Fuller, B.J., Cryoprotectants: the essential antifreezes to protect life in the frozen state, CryoLetters, 2004, vol. 25, no. 6, pp. 375–388.

    CAS  Google Scholar 

  20. Laurent, S., Forge, D., Port, M., et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., 2008, vol. 108, no. 6, pp. 2064–2110.

    CAS  Google Scholar 

  21. Nel, A.E., Mädler, L., Velegol, D., et al., Understanding biophysicochemical interactions at the nano–bio interface, Nat. Mater., 2009, vol. 8, pp. 543–557.

    Article  CAS  Google Scholar 

  22. Jarupoom, P. and Jaita, P., Influence of barium hexaferrite on magnetic properties of hydroxyapatite ceramics, J. Nanosci. Nanotechnol., 2015, vol. 15, pp. 9217–9221.

    Article  CAS  Google Scholar 

  23. Pankaew, P. and Klumdoung, P., Structural and magnetic characterizations of nano sized grain zinc ferrite/hydroxyapatite ceramic prepared by solid state reaction route, J. Nanosci. Nanotechnol., 2015, vol. 15, pp. 9281–9286.

    Article  CAS  Google Scholar 

  24. Webster, T.J., Massa-Schlueter, E.A., Smith, J.L., and Slamovich, E.B., Osteoblast response to hydroxyapatite doped with divalent and trivalent cations, Biomaterials, 2004, vol. 25, pp. 2111–2121.

    Article  CAS  Google Scholar 

  25. Hou, C.H., Hou, S.M., Hsueh, Y.S., et al., The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy, Biomaterials, 2009, vol. 30, pp. 3956–3960.

    Article  CAS  Google Scholar 

  26. Dorozhkin, S.V. and Epple, M., Biological and medical significance of calcium phosphates, Angew. Chem., Int. Ed. Engl., 2002, vol. 41, no. 17, pp. 3130–3146.

    Article  CAS  Google Scholar 

  27. Vallet-Regí, M., Evolution of bioceramics within the field of biomaterials, C. R. Chim., 2010, vol. 13, nos. 1–2, pp. 174–185.

    Article  Google Scholar 

  28. Dorozhkin, S.V., Bioceramics of calcium orthophosphates, Biomaterials, 2010, vol. 31, pp. 1465–1485.

    Article  CAS  Google Scholar 

  29. Severin, A.V. and Pankratov, D.A., Synthesis of nanohydroxyapatite in the presence of iron(III) ions, Russ. J. Inorg. Chem., 2016, vol. 61, no. 3, pp. 265–272.

    Article  CAS  Google Scholar 

  30. Melikhov, I.V., Komarov, V.F., Severin, A.V., et al., Two-dimensional crystalline hydroxyapatite, Dokl. Phys. Chem., 2000, vol. 373, no. 3, pp. 355–358.

    CAS  Google Scholar 

  31. Liao, C.J., Lin, F.H., Chen, K.S., and Sun, J.S., Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere, Biomaterials, 1999, vol. 20, pp. 1807–1813.

    Article  CAS  Google Scholar 

  32. Komozin, P.N., Pankratov, D.A., and Kiselev, Yu.M., EPR spectra of solutions of platinum superoxo hydroxo complexes, Russ. J. Inorg. Chem., 1999, vol. 44, no. 12, pp. 1945–1951.

    Google Scholar 

  33. Jiang, M., Terra, J., Rossi, A.M., et al., Fe2+/Fe3+ substitution in hydroxyapatite: theory and experiment, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 66, pp. 22410710–22410715.

    Google Scholar 

  34. Koksharov, Yu.A., Gubin, S.P., Kosobudsky, I.D., et al., Electron paramagnetic resonance spectra near the spin-glass transition in iron oxide nanoparticles, Phys. Rev. B: Condens. Matter Mater. Phys., 2001, vol. 63, pp. 124071–124074.

    Google Scholar 

  35. Carbone, C., Benedetto, F.Di., Marescotti, P., et al., Natural Fe-oxide and oxyhydroxide nanoparticles: an EPR and SQUID investigation, Mineral. Petrol., 2005, vol. 85, pp. 19–32.

    Article  CAS  Google Scholar 

  36. Koksharov, Yu.A., Dolzhenko, V.D., and Agazade, S.A., Electron magnetic resonance of synthetic goethite in the range of the magnetic transition, Phys. Solid State, 2010, vol. 52, no. 9, pp. 1929–1934.

    Article  CAS  Google Scholar 

  37. Koksharov, Yu.A., Pankratov, D.A., Gubin, S.P., et al., Electron paramagnetic resonance of ferrite nanoparticles, J. Appl. Phys., 2001, vol. 89, no. 4, pp. 2293–2298.

    Article  CAS  Google Scholar 

  38. Singh, R.K., Kothiyal, G.P., and Srinivasan, A., Electron spin resonance and magnetic studies on CaO–SiO2–P2O5–Na2O–Fe2O3 glasses, J. Non-Cryst. Solids, 2008, vol. 354, pp. 3166–3170.

    Article  CAS  Google Scholar 

  39. Pankratov, D.A., Mössbauer study of oxo derivatives of iron in the Fe2O3–Na2O2 system, Inorg. Mater., 2014, vol. 50, no. 1, pp. 82–89.

    Article  CAS  Google Scholar 

  40. Sorkina, T.A., Polyakov, A.Yu., Kulikova, N.A., et al., Nature-inspired soluble iron-rich humic compounds: new look at the structure and properties, J. Soils Sediments, 2014, vol. 14, no. 2, pp. 261–268.

    Article  CAS  Google Scholar 

  41. Dyar, M.D., Jawin, E.R., Breves, E., et al., Mössbauer parameters of iron in phosphate minerals: implications for interpretation of martian data, Am. Mineral., 2014, vol. 99, nos. 5–6, pp. 914–942.

    Article  Google Scholar 

  42. Mingzhi, J., Xianhao, C., Weiming, X., et al., Mossbauer study of ferric phosphate catalysts, Hyperfine Interact., 1988, vol. 41, pp. 645–648.

    Article  Google Scholar 

  43. Polyakov, A.Yu., Goldt, A.E., Sorkina, T.A., et al., Constrained growth of anisotropic magnetic d-FeOOH nanoparticles in the presence of humic substances, CrystEngComm, 2012, vol. 14, no. 23, pp. 8097–8102.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Pankratov.

Additional information

Original Russian Text © D.A. Pankratov, V.D. Dolzhenko, E.A. Ovchenkov, M.M. Anuchina, A.V. Severin, 2017, published in Neorganicheskie Materialy, 2017, Vol. 53, No. 1, pp. 94–104.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankratov, D.A., Dolzhenko, V.D., Ovchenkov, E.A. et al. Properties of iron-containing nanohydroxyapatite-based composites. Inorg Mater 53, 115–124 (2017). https://doi.org/10.1134/S0020168517010125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168517010125

Keywords

Navigation